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Abstract 
 
The typical cold-formed steel (CFS) members are classified as thin-walled structures, highly susceptible 
to structural stability phenomena: local (L), distortional (D) and global (G) buckling modes. In addition to 
the single buckling modes, L, D and G, interactions between the buckling modes may take place 
depending on the members’ geometry and the contribution of the ductility of the material. These 
interactions may lead to strength erosion that should be considered in structural design, which is mostly 
performed on the basis of the Direct Strength Method (DSM). In this context, the present research 
presents a unified approach to predict the post-buckling behavior and the compressive strength of CFS 
columns, including L, D and LD buckling modes. The proposed approach is based on available 
experimental data and finite element extensive results of CFS columns, integrating Winter-type 
equations to a general design proposition for lipped channel, hat, zed and rack columns. Moreover, an 
introduction to the next stage of the ongoing research is referred, involving the global mode 
participation and its interaction with local and distortional buckling modes.  
 
1. Introduction 
 
The present research aims at developing a unified method to predict the post-buckling behavior and 
strength and of cold-formed steel (CFS) columns, targeting in new set of design equations that provide 
sufficiently accurate strength estimates and maintain the easiness of design expressions. The 
propositions and results presented in the following take into consideration well established and 
accepted solutions, based on the direct strength method (DSM) principles and rules, as those addressed 
to single global (G) and local-global (LG) buckling interaction, as well as the single distortional D buckling 
formulation, presented respectively by Eqs. 1, 2 and 3 (fn =Pn/A is the column strength, λ’s, fcr’s and fy are 
the typical slenderness factors, parametric critical buckling loads fcr=Pcr /A and yield stress of the 
material, respectively). These are the solutions included up to now in the standards and codes AISI 
(2016), AS/NZS (2018) and ABNT (2010). European design rules for CFS members EN-3 (2006) are not 
based on the same principles and because of this are not included in the present considerations. In 
addition to the phenomena predicted by the Eqs. 1, 2 and 3, CFS are susceptible to instabilities involving 
buckling interaction LD, DG and LDG. 
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Studies on LD interaction phenomenon were performed by Dinis et al. (2007), Silvestre et al. (2012), 
Young et al. (2013), Dinis et al. (2014), Dinis and Camotim (2015), Martins et al. (2015b), Martins et al. 
(2015b), Martins et al. (2017a), Martins et al. (2017b), Matsubara et al. (2019) and Batista et al. (2019) 
and Campos (2020). These studies contributed to the improvement of the comprehension of the LD 
coupled buckling, based on experimental and numerical results. 
 
Batista et al. (2019) developed alternative solution for CFS lipped channel columns under LD interaction, 
based on the DSM formulation and taking into account the classical Winter-type equation Eq. 4 for the 
column strength, with the coefficients A and B shown in Eqs. 5 and 6, defined on the basis of numerical 
results developed by Matsubara et al. (2019). The proposed approach was validated with the help of 
available experimental tests data and numerical (FEM) sets of columns results, produced by recognized 

research activities. In this proposed approach RDL = D/L and maxLD = max (L, D) are respectively the 
LD slenderness ratio and the maximum (L or D) slenderness factor of the column. As cited above, the 
proposed formulation for LD interaction of CFS columns was originally formulated and calibrated for 
lipped channel CFS. It is worthy of citation that the solution expressed by Eqs. 4, 5 and 6 is the strength 
surface that bridges a new DSM solution integrating L, D and LD buckling modes, since no effect of the 
global modes (flexural or flexural-torsional) develops along the loading equilibrium path of the column: 

this condition was achieved by taking columns with (approximately) G/maxLD lower than 0.40. 
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DG interaction was recently investigated by Martins et al. (2018), concluding that this type of interaction 
can be considered with the traditional DSM’s global buckling strength solution for steel columns Eq. 1. A 
more recent research conducted by Lazzari and Batista (2020) confirmed this assumption with the help 
of numerical and experimental results. 
 
Lastly, the triple LDG interaction has been mainly studied for lipped channels columns. Numerical 
studies (e.g. Cava et al. (2016), Dinis et al., 2012 and 2017) concluded that this interaction is safely 
handled by the current LG approach, Eq. 2. The same assumption was confirmed by experimental 
campaigns, Santos et al. (2012, 2014) and Young et al. (2017), compressive tests of lipped channel 
columns specifically designed to study the LDG interaction.  
 
Taking into account these results, as well as a large number of additional results and experience 
accumulated during the last decades regarding the buckling interaction effects for the design of CFS 
columns, a complete set of design equations including all the possible L, D and G modes interaction 
would be possible. For this, it was decided to take the following principles: (i) DSM-based procedure; (ii) 
respect the well-established and already traditional design solutions and equations (e.g., for LG and D 
buckling, Eqs. 1 to 3); (iii) keep simple and easy-to-apply procedure, avoiding “black box” procedures, 
with hidden structural meaning and far from the comprehension by engineers; (iv) the slenderness 
factor λi = (f/fcri)0.5 is the basis of the strength equations, according to the design methods and practical 
experience usually found in codes and standards, with “i” as the reference buckling mode, L, D or G; f 
can be the steel yield stress (fy) or a different limiting stress (e.g. fnG for global slenderness factor); 
fcri=Pcr/A is the parametric critical buckling axial load referred to L, D or G (flexural or flexural-torsional) 
mode. In this condition, two different approaches are presented in the following, including their 
calibration results with the help of available numerical and experimental results in the literature. 
 
2. LD interaction approach for usual CFS 
 
In order to extend the solution proposed by Batista et al. (2019) - CFS lipped channel columns - to other 
usual CFS, it was added a correction factor Sn for each type of section, as presented by Eq. 7. The 
coefficients A and B are the same previously proposed by the authors, Eqs. 5 and 6.  
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The calibration process of the correction factor Sn was carried out with the help of the numerical results 

presented by Dinis and Camotim (2015), Martins et al. (2015b), Campos (2020). The calibrated results of 
the correction factor Sn are summarized in Table 1. 
 
Table 2 shows that the proposed fnLD approach (Eqs.7, 5 and 6) displays quite accurate results of the 
comparison with finite element method (FEM) computed strength fu= Pu/A. The results of the Load and 
Resistance Factor Design (LRFD) resistance factor obtained for sets of Lipped Channel, Hat, Zed and Rack 
numerical results are in accordance with the North American Specification (AISC, 2016), φ  0.85. 
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Table 1: Calibrated Sn values for different CFS types. 
 

               CFS Types Sn 

 
 
 

Lipped Channel 

 

 

 
 
 

Sn = 1.00 
 

 
 
 
 

Hat 

 

 

 
RλDL < 0.45       Sn =1.00 

 
0.45 ≤ RλDL ≤ 1.05 

Sn = -0.98 RλDL
2+1.47 RλDL+0.54 

 
RλDL > 1.05       Sn =1.00 

 

 
 
 

Zed 

 

 

 
RλDL < 0.45       Sn =1.00 

 
0.45 ≤ RλDL ≤ 1.00 

Sn = -1.34 RλDL
2+1.95 RλDL+0.39 

 
RλDL > 1.00       Sn =1.00 

 

 
 
 

Rack 

 

 
 

 
RλDL < 0.45       Sn =1.00 

 
0.45 ≤ RλDL ≤ 0.95 

Sn = -1.12 RλDL
2+1.57 RλDL+0.52 

 
RλDL > 0.95       Sn =1.00 

 
In addition, Figure 1 shows the comparison between the experimental strength of lipped channel 
columns fuexp= Pexp /A and fnLD approach (Eqs.7, 5 and 6). In order to avoid interference of the global 

mode, columns with G /maxLD ≤ 0.40 were selected. The experimental LRFD resistance factor obtained is 
in line with the North American Specification, φ > 0.87. For RλDL ≤ 0.45, fnLD approach converges to local 
Winter-type equation, fnL, with A = 0.15 and B = 0.80. 
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Table 2: Comparison between FEM strength results fu and fnLD approach (Eqs. 7, 5 and 6). 

fu / fnLD 

CFS Type 
Number 
of tests Range Mean St. Dev. Coef.Var. φ 

Lipped Channel1 593 0.77 - 1.26 1.02 0.08 0.08 0.88 

Hat2 531 0.86 -1.23 1.01 0.06 0.06 0.90 

Zed2 554 0.85 - 1.27 1.02 0.07 0.07 0.90 

Rack3 595 0.83 - 1.28 1.01 0.09 0.09 0.88 
1 Numerical results, Silvestre et al. (2012), Dinis and Camotim (2015), Martins et al. (2015b), Matsubara et al. (2019) and new 

original results of the present authors. 
2 Numerical results, Dinis and Camotim (2015), Martins et al. (2015b). 
3 Numerical results, Dinis and Camotim (2015), Martins et al. (2015b) and Campos (2020). 

 

 
 

Figure 1: Comparison between experimental results and fnLD approach (Eqs. 7, 5 and 6) for lipped channel columns. 

 
3. Assessment of the global buckling mode  
 
The assessment of global mode influence in the fnLD approach (Eqs. 7, 5 and 6) is illustrated in Figs. 2 and 
3. Numerical and experimental column strength results are respectively fu and fuexp. For both sets of 
experimental and numerical results in Figs. 2 and 3, respectively, the higher the slenderness ratio 
λG/λmaxLD the lower the results of the comparison between the sets of columns structural strength with 
the proposed design equations (fuexp/fnLD and fu/fnLD), diverging from the target expected results, with the 
mean value of fu/fnLD and fuexp/fnLD around unity. Furthermore, one may note that fnLD (Eq.7) approach 
confirms accurate results in the range of λG/λmaxLD < 0.40. These results indicate the growing presence of 
the global buckling mode participation in the column behavior the higher is the slenderness ratio 
λG/λmaxLD. 
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Figure 2: Increase of the global buckling mode participation – lipped channel experimental results.  
 

 
 

Figure 3: Increase of the global buckling mode participation – lipped channel numerical results.  

 
Finally, a more general approach to estimate the failure load of CFS columns, including L, D and G modes 
relevant participation, is under development with promising results.  This can be achieved with 
additional parameter in the tested sets of equations (Eqs. 7, 5 and 6) that introduces the global mode 
contribution, according with the slenderness ratio λG/λmaxLD. 
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4. Final remarks 
 
The results presented in this paper are aligned with previous results of Matsubara et al. (2019) and 
Batista et al. (2020). The column strength fnLD (Eq. 7, 5 and 6) approach proved to be easy to apply and 
accurate for the design purposes of CFS columns. The proposed solution was extended for the most 
usual CFS section types (lipped channel, hat, zed and rack). 
The present research is on track to find a unified solution to deal with the buckling modes interaction 
LD, LG, DG, LDG, keeping the widely accepted DSM-based principles and typical equations (namely the 
Winter equation). A parametric study is underway to improve the proposed solution, incorporating the 
interaction of the global mode with local and distortional buckling modes. 
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Abstract 
The stability and design of fixed-ended stainless steel equal-leg angle section members subjected to axial 
compression are studied herein. Existing experimental data on stainless steel equal-leg angle section 
columns collected from the literature are used for the validation of numerical (shell finite element) 
models, developed within the commercial package ABAQUS. Validation is performed by means of 
comparisons between the test and numerical results, considering ultimate loads, failure modes and the 
load-deformation responses, all of which are shown to be generally in good agreement. A numerical 
parametric study is then presented considering angle section columns in the three main families of 
stainless steel (austenitic, ferritic and duplex) with a wide range of slenderness values. The behaviour and 
normalised load-carrying capacity of the studied members is shown to be dependent on not only the 
column slenderness, but also the ratio of the elastic torsional-flexural buckling load to the elastic minor-
axis flexural buckling load. Finally, a design approach recently proposed for carbon steel angle section 
columns is extended for application to stainless steel and verified against the experimental and numerical 
results. The proposed approach offers substantially improved accuracy and consistency in strength 
predictions compared to the existing codified design rules. 
 
1. Introduction 
Angle section compression members feature in a range of structures, including towers and trusses, and in 
the bracing of buildings and bridges. Although angles have been studied since the 1920s (Stang & 
Strickenberg 1922), their complex mechanical behaviour continues to pose challenges, and current 
structural design provisions in international standards are known to have limitations (Behzadi-Sofiani et 
al. 2021, Dinis and Camotim 2015, Rasmussen 2005). New resistance functions for carbon steel angle 
section columns in the American (Dinis and Camotim 2015) and European (Behzadi-Sofiani et al. 2021) 
design frameworks have been recently developed, leading to substantial improvements in the accuracy 
and consistency of capacity predictions. 
 
Building on this previous work, the aim of the present paper is to develop a new approach to the design 
of stainless steel equal-leg angle section columns suitable for incorporation into EN 1993-1-4 (2006) and 
to assess the accuracy of the proposals. 
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2. Review of previous research 
Tests on fixed-ended stainless steel angle section columns have been reported by Menezes et al. (2019), 
Liang et al. (2019), Sun et al. (2019), Zhang et al. (2019), Sarquis et al. (2020) and Sirqueira et al. (2020). 
Design rules for stainless steel angle section columns are included in a number of international standards, 
including EN 1993-1-4 (2006), SEI/ASCE-8 (2002) and AS/NZS4673 (2001). Liang et al. (2019) and Zhang et 
al. (2019) investigated the accuracy of EN 1993-1-4 (2006), SEI/ASCE-8 (2002) and AS/NZS4673 (2001) in 
determining the ultimate capacity for hot-rolled and cold-formed stainless steel equal-leg angle section 
columns; highly conservative with scattered predictions were revealed. Zhang et al. (2019) also studied 
the accuracy of the direct strength method (DSM) based design rules developed by Dinis and Camotim 
(2015); the strength predictions were found to be accurate and consistent, though, owing to the fact that 
the provisions were established for carbon steel rather than stainless steel angles, with a large portion of 
the results on the unsafe side. Menezes et al. (2019), Sun et al. (2019), Sarquis et al. (2020) and Sirqueira 
et al. (2020) evaluated the accuracy of EN 1993-1-4 (2006) in predicting the strength of stainless steel 
angle section columns, revealing undue conservatism. Menezes et al. (2019) and Sarquis et al. (2020) 
developed new design proposals based on EN 1993-1-4 (2006). Sun et al. (2019), alongside Sirqueira et al. 
(2020), showed that the continuous strength method (CSM) capacity predictions were more accurate and 
consistent than EN 1993-1-4 (2006). In the present study, numerical models are validated and used to 
perform a parametric study and new structural design rules are developed. The new design proposals are 
shown to offer substantially more accurate and consistent resistance predictions than the existing rules 
given in Eurocode 3. 
 

3. Numerical modelling 
The commercial software ABAQUS was used herein to create finite element (FE) models to simulate the 
mechanical behaviour of stainless steel equal-leg angle section members under axial compression. 
Validation of the FE models against existing experimental data on stainless steel equal-leg angle section 
columns is first presented. A parametric study is then conducted to investigate the behaviour of equal-leg 
angle section columns of different stainless steel grades and geometries. 
 
3.1. General modelling assumptions 
The general modelling assumptions are described in the current section. A 4-noded shell element with 
reduced integration, 6 degrees of freedom (3 translational and 3 rotational) at each node, designated S4R 
in the ABAQUS (2016) element library, was employed to model the angle section members. Both hot-
rolled and cold-formed angles were modelled following the general approach employed by Behzadi-
Sofiani et al. (2020). To model the axial load applied to the members, a longitudinal displacement was 
imposed at one end through a reference point that was free to move longitudinally. The geometrically 
and materially nonlinear analyses were executed using the Riks arc-length method (Riks 1979). 
 
For validation of the FE models, a series of experiments on stainless steel angle section columns were 
simulated (see Section 3.2). The measured geometric properties and stress-strain curves were employed 
in the analyses. For the cases in which the full stress-strain curves were not reported, and throughout the 
parametric study, the two-stage Ramberg-Osgood material model (Arrayago et al. 2015), with measured 
or defined values for the key mechanical properties, was utilised. A Poisson's ratio of 0.3 in the elastic 
range was assumed in all cases. The material properties were input into ABAQUS in the form of true stress 
and true plastic strain, converted from the measured engineering stress and strain values. For the hot-
rolled stainless steel angles, a bilinear residual stress distribution with a peak value of 70 MPa, constant 
with thickness and leg width, was employed (Behzadi-Sofiani et al. 2021). For the cold-formed stainless 
steel angles, the dominant bending residual stresses were assumed to be inherently captured in the 
stress-strain curves (Jandera et al. 2008) and were therefore not explicitly defined. 
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For the validation study, if reported, the measured amplitude and direction of initial imperfections were 
used. However, where measured data were not available, and throughout the parametric study, a 
sinusoidal half wave function over the member length L with an amplitude of L/1000 at midspan was 
adopted about both principal axes for the initial bow imperfections. The direction of the minor-axis bow 
imperfection was chosen to give the lowest resistance, which was consistently towards the tips of the 
cross-section legs. A similar shape was also adopted for the initial twist with an amplitude of 
θ= tan-1 (L/1000b), where b is the leg width, at midspan. Boundary conditions were applied to the end 
supports through kinematic coupling constraints to link all degrees of freedom of the member end-nodes 
to two reference points. Fixed-ended boundary conditions were created by restraining the necessary 
degrees of freedom at the reference points. By employing kinematic coupling constraints, warping was 
also prevented at both ends. 
 
3.2. Validation 
The FE models were validated against a total of 122 experiments on stainless steel angle section columns 
from the literature (Menezes et al. 2019, Liang et al. 2019, Sun et al. 2019, Zhang et al. 2019,  Sarquis et 
al. 2020, Sirqueira et al. 2020, Zhang et al. 2020a, Zhang et al. 2020b, Dobric et al. 2020, Zhang et al. 2021); 
a summary of the comparisons between the FE model ultimate loads and those obtained experimentally 
is presented in Table 1. Overall, there is good agreement between the test and FE ultimate loads for both 
fixed-ended (F) and cylindrically-pinned (CP) boundary conditions (B/C) and both considered 
manufacturing processes (hot-rolling and cold-forming) with a mean Nu,FE/Nu,Test ratio (where Nu,FE and 
Nu,Test are the FE and test ultimate loads, respectively) of 1.00 and a coefficient of variation (CoV) of 0.08.  
 

Table 1: Summary of comparisons of FE model ultimate loads Nu,FE with those obtained experimentally Nu,Test. 

Source 
Manufacturing 

process 
B/C 

No. of 
tests 

Nu,FE/Nu,Test 

Mean CoV Min Max 

Menezes et al. (2019) 

Hot-rolling 

F 13 1.04 0.06 0.96 1.16 

Liang et al. (2019) F 16 1.01 0.04 0.91 1.09 

Sun et al. (2019) F 10 1.00 0.07 0.92 1.12 

Sarquis et al. (2020) F 10 0.98 0.07 0.90 1.09 

Sirqueira et al. (2020) F 18 0.96 0.05 0.87 1.07 

Zhang et al. (2020a) CP 12 0.98 0.06 0.91 1.09 

Zhang et al. (2021) CP 12 0.98 0.04 0.93 1.03 

Zhang et al. (2019) 

Cold-forming 

F 16 1.00 7.00 0.92 1.12 

Zhang et al. (2020b) CP 4 0.99 0.05 0.90 1.50 

Dobric et al. (2020) F 3 1.12 0.02 1.10 1.15 

Dobric et al. (2020) CP 8 1.02 0.22 0.71 1.29 

Total     122 1.00 0.08 0.71 1.29 

 
3.3. Parametric study 
Following validation of the numerical models, a parametric study was conducted considering different 
material properties and a wide range of cross-section geometries and member lengths. The two-stage 
Ramberg-Osgood material model was used in combination with the standardised material properties 
proposed by Afshan et al. (2019). For the cold-formed members, an enhanced strength, calculated using 
the predictive model presented in (Rossi et al. 2013), was applied to the corner region of the angles. A 
total of 1146 FE results was generated across a range of geometric properties. The parametric study 
results for the fixed-ended hot-rolled stainless steel equal-leg angle section columns are presented in Fig. 
1, where the buckling reduction factor χ=Nu/Afy (where Nu is the ultimate load obtained from the FE 
models, A is the cross-section area and fy is the material yield strength) is plotted against the 
corresponding normalised slenderness. For reference, the Eurocode 3 (EC3) local (for single outstand 
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flanges from EN 1993-1-4 (2006)) and flexural (from EN 1993-1-4 (2006)) buckling curves are also shown, 
corresponding to the torsional and minor-axis flexural buckling modes, respectively, for angle section 
columns. The results are analysed and discussed in the following section. 

 
Figure 1: Comparison of test and FE results for fixed-ended hot-rolled austenitic, ferritic and duplex stainless steel 

equal-leg angle section columns where (a) torsional-flexural buckling and (b) minor-axis flexural buckling are 
critical against EC3 buckling curves. 

 

4. Analysis and discussion of results 
The assembled experimental and numerical data are analysed and discussed in the current section. It can 
be seen from Fig. 1a that, where torsional-flexural buckling is critical, stainless steel angle section columns 
with the same slenderness can have very different buckling reduction factors. This contrasts with the 
existing EC3 design approach, where angle section columns with the same member slenderness have the 
same member buckling reduction factor because, regardless of the critical buckling mode, the flexural 
buckling curve is always applied. Similar trends in results have been seen for steel equal-leg angle section 
columns in Behzadi-Sofiani et al. (2021). The vertical spread of data in Fig. 1a is caused by the changing 
post-buckling stability with the Ncr,TF/Ncr,F,v ratio, where Ncr,TF and Ncr,F,v are the torsional-flexural and 
minor-axis flexural elastic buckling loads, respectively. When torsional-flexural buckling is critical (Fig. 1a), 

for the same slenderness λ̅TF, the Ncr,TF/Ncr,F,v ratio can vary between zero (indicating torsional-dominant 
buckling with plate-like behaviour and corresponding to the high data points on the graph) and 1.0 
(denoting the transition point from torsional-flexural buckling to minor-axis flexural buckling and 
corresponding to the low data points on the graph). For Ncr,TF/Ncr,F,v ratios greater than 1.0, minor-axis 
flexural buckling becomes critical, for which the results are presented in Fig. 1b. In Fig. 1a, the top data 
points correspond to the stainless steel angle section columns with the lowest Ncr,TF/Ncr,F,v ratio (0.01) and 
lie in the region of the local buckling curve, set out in EN 1993-1-4 (2006), which reflects the beneficial 
stable post-buckling behaviour of plates; as this ratio increases, the reduction factor decreases and 
converges to the flexural buckling curve, which reflects the approximately neutral post-buckling stability 
of columns failing in this mode. For Ncr,TF/Ncr,F,v ratios greater than 1.0, the corresponding reduction factors 
generally follow the column flexural buckling curve, as shown in Fig. 1b. 
 
5. Design of stainless steel equal-leg angle section columns (Eurocode 3 – EN 1993-1-4) 
Stainless steel members are designed according to the rules set out in EN 1993-1-4 (2006). Comparisons 
of the test and FE ultimate capacities Nu with the resistances predicted by EC3 Nb,EC3 are made for hot-
rolled stainless steel angles in Fig. 2. The current EC3 provisions are extremely conservative in predicting 
the strength of stainless steel equal-leg angle section columns where torsional-flexural buckling is critical. 
This can be explained, as described by Dinis et al. (2012) and Behzadi-Sofiani et al. (2021), by the double-
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counting of the same buckling mode in the local and member buckling checks and the failure to recognise 
the stable post-buckling behaviour in the member-level buckling curves for torsional-flexural buckling. 
New design proposals are presented in the subsequent section to address and resolve this issue.  

 
Figure 2: Comparisons between test/FE and EC3 ultimate capacities for fixed-ended hot-rolled austenitic, duplex 
and ferritic stainless steel equal-leg angle section columns where (a) torsional-flexural and (b) minor-axis flexural 

buckling are critical. 
 

6. New design proposals 
Mirroring recent proposals (Behzadi-Sofiani et al. 2021) for the design of fixed-ended steel equal-leg angle 
section columns, new proposals for the design of fixed-ended stainless steel equal-leg angle section 
columns are presented and assessed in the current section. 
 
6.1. Torsional-flexural buckling 
The proposed design buckling resistance 𝑁b,Rd of stainless steel equal-leg angle section columns where 

Ncr,TF/Ncr,F,v≤1.0 is given thus: 

𝑁b,Rd =
𝜒TF𝐴𝑓y

𝛾M1
                                                                         (1) 

noting that the gross area A is used for all classes of cross-section to eliminate the effective double-
counting of the torsional-dominant buckling mode in the cross-section (i.e. local) and member level 
stability checks, as occurs in the current EC3 design provisions. In Eq. 1 fy is the material yield strength and 
χTF is the reduction factor for torsional-flexural buckling, given by: 

𝜒TF = 𝜒F + ΔF(𝜒T − 𝜒F)                                                               (2) 
in which the torsional buckling reduction factor χT is given by: 

𝜒T =
λ̅TF−0.188

λ̅TF
2    but   𝜒T ≤ 1.0                                                          (3) 

and ΔF is given thus: 

ΔF = (1 −
𝑁cr,TF

𝑁cr,F,𝑣
)

𝑝

                                                                  (4) 

where 

𝑝 = {
2.0λ̅TF   for   λ̅TF ≤ 2.0

2.93λ̅TF
0.45   for  λ̅TF > 2.0

                                                        (5) 

with the torsional-flexural slenderness λ̅TF and ϕ being thus: 

λ̅TF = √
𝐴𝑓y

𝑁cr,TF
                                                                       (6) 

𝜙 = 0.5[1 + 𝛼𝛽(λ̅TF − λ̅0)
𝛽

+ λ̅TF
2 ]                                                   (7) 
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For both hot-rolled and cold-formed angles, the proposed values for 𝛽 and limiting slenderness λ̅0 are 
1.45 and 0.2, respectively. For the imperfection factor α, values of 0.6 and 0.49 are recommended for hot-

rolled and cold-formed stainless steel angles, respectively. Note though for λ̅TF and λ̅ values greater than 
about 1.0, that despite the lower value for the imperfection factor α, with the newly introduced parameter 
𝛽 , the proposed buckling curves lie below the existing EN 1993-1-4 buckling curve in the region 
Ncr,TF/Ncr,F,v=1.0, reflecting the influence of mode interaction between torsional-flexural and minor-axis 
flexural buckling. 
 
6.2. Minor-axis flexural buckling 
The design buckling resistance Nb,Rd for equal-leg angle section columns where Ncr,TF/Ncr,F,v>1.0 is obtained 
thus: 

𝑁b,Rd =
𝜒F𝐴𝑓y

𝛾M1
                                                                           (8) 

where 

𝜒F =
1

𝜙+√𝜙2−λ̅2
   but   𝜒F ≤ 1.0                                                           (9) 

in which the normalised slenderness λ̅, ϕ and the generalized initial imperfection factor η are given by: 

λ̅ = √
𝐴𝑓y

𝑁cr,F,𝑣
                                                                             (10) 

𝜙 = 0.5[1 + 𝜂 + λ̅2]                                                                    (11) 

𝜂 = 𝛼𝛽(λ̅ − λ̅0)
𝛽

                                                                       (12) 

with 𝛽 being a factor allowing for the influence of interactive buckling: 

𝛽 = 1.9 − 0.45
𝑁cr,TF

𝑁cr,F,𝑣
     but     1.0 ≤ 𝛽 ≤ 1.45                                           (13) 

Note that, unlike in the case of torsional-flexural buckling, the gross area A is replaced by the effective 
area Aeff (EN1993-1-5 2006) in Eqs. 8 and 10 for Class 4 cross-sections when minor-axis flexural buckling is 
critical; Aeff is determined from EN 1993-1-4 (2006). The imperfection factor and limiting slenderness 
remain as specified above: α=0.60 and α=0.49 for hot-rolled and cold-formed stainless steel angles, 

respectively, and λ̅0=0.2 for both hot-rolled and cold-formed stainless steel angles. 
 

6.3. Assessment of design proposals 
A summary of the comparisons of the test and FE capacities against the resistance predictions according 
to the new proposals Nb,prop is presented in Fig. 3 and Table 2. 

 
Figure 3: Comparisons of test and FE results against the new proposals for the design of fixed-ended hot-rolled 

austenitic, duplex and ferritic stainless steel equal-leg angle section columns for the cases of: (a) torsional-flexural 
buckling and (b) minor-axis flexural buckling being critical. 
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By comparing Figs. 2a and 3a, it can be seen that the resistance predictions are significantly improved 
for stainless steel angles exhibiting torsional-flexural buckling using the new proposals relative to the 
current Eurocode 3 provisions. Comparing Figs. 2b and 3b, the proposed resistance predictions can also 
be seen to be more accurate than those given by the current Eurocode 3 provisions for stainless steel 
angles failing by minor-axis flexural buckling. 

 
Table 2: Summary of comparisons between test/FE capacities and resistance predictions obtained from proposed 

design method for fixed-ended stainless steel equal-leg angle section columns. 

Source 
Manufacturing 

process 
Stainless steel 

family 
Evaluation 
parameter 

Nu/Nb,prop 

Torsional-flexural Flexural Total 

FE 

Hot-rolling 

Austenitic 
Mean 1.09 1.13 1.10 

CoV 0.10 0.07 0.09 

Duplex 
Mean 1.21 1.19 1.20 

CoV 0.10 0.08 0.10 

Ferritic 
Mean 1.15 1.19 1.16 

CoV 0.11 0.07 0.10 

Cold-forming 

Austenitic 
Mean 1.12 1.14 1.13 

CoV 0.10 0.07 0.09 

Duplex 
Mean 1.21 1.15 1.19 

CoV 0.10 0.08 0.10 

Ferritic 
Mean 1.16 1.16 1.16 

CoV 0.10 0.08 0.10 

Test 

Hot-rolling Austenitic 
Mean 1.09 1.04 1.09 

CoV 0.10 0.06 0.10 

Cold-forming Austenitic 
Mean 1.14 - 1.23 

CoV 0.11 - 0.11 

 

 
7. Conclusions 
A comprehensive study into the behaviour and stability design of fixed-ended stainless steel equal-leg 
angle section members subjected to axial compression has been presented. Finite element models were 
developed and validated against existing experimental data from the literature. Good agreement was 
shown between the test and numerical results. A parametric study was subsequently conducted on both 
hot-rolled and cold-formed angle section columns in austenitic, duplex and ferritic stainless steel with 
fixed-ended support conditions covering a wide spectrum of cross-section and member geometries. A 
total of 1146 numerical results was generated. The numerical data were combined with existing test 
results from the literature and used to assess the current design provisions in EN 1993-1-4 (2006) for 
stainless steel equal-leg angle section columns. The current Eurocode 3 design provisions are shown to be 
conservative in cases where the torsional-flexural buckling mode is critical due to effective double-
counting of the same buckling mode in the cross-section and member checks alongside the failure to 
recognise the stable post-buckling characteristic of the torsional-flexural mode in the member buckling 
curves. New design provisions are developed for both torsional-flexural and minor-axis flexural buckling 
that capture the influence of the transition in post-buckling behaviour from stable to neutral with 
increasing Ncr,TF/Ncr,F,v ratios and the effects of interactive buckling between the torsional-flexural and 
minor-axis flexural buckling modes in the region where Ncr,TF/Ncr,F,v≈1.0. The new design rules provide 
dramatic improvements in both the accuracy and consistency of strength predictions for all grades of 
stainless steel equal-leg angle section columns with fixed-ended support conditions. 
 
 
 
 



 8 

References 
ABAQUS (2016). “Version 6.16 Analysis User's Guide.” Dassault Systemes Simulia Corporation. Providence, USA. 
Afshan, S., Zhao, O., Gardner, L. (2019). “Standardised material properties for numerical parametric studies of 

stainless steel structures and buckling curves for tubular columns.” Journal of Constructional Steel Research, 
152, 2-11. 

Arrayago, I., Real, E., Gardner, L. (2015). “Description of stress-strain curves for stainless steel alloys.” Materials 
and Design, 87, 540-552. 

AS/NZS4673 (2001). “Cold-formed stainless steel structures.” Sydney. 
Behzadi-Sofiani, B., Gardner, L., Wadee, M.A., Dinis, P.B., Camotim, D. (2021). “Behaviour and design of 

fixed-ended steel equal-leg angle section columns.” Journal of Constructional Steel Research, 182, 106649. 
da S. Sirqueira, A., da S. Vellasco, P., de Lima, L., Sarquis, F. (2020). “Experimental assessment of stainless steel 

hot-rolled equal legs angles in compression.” Journal of Constructional Steel Research, 169, 106069. 
de Menezes, A.A., da S. Vellasco, P.C., de Lima, L.R., da Silva, A.T. (2019). “Experimental and numerical 

investigation of austenitic stainless steel hot-rolled angles under compression.” Journal of Constructional Steel 
Research, 152, 42-56. 

Dinis, P.B., Camotim, D. (2015). “A novel DSM-based approach for the rational design of fixed-ended and 
pin-ended short-to-intermediate thin-walled angle columns.” Thin-Walled Structures, 87, 158-182. 

Dinis, P.B., Camotim, D., Silvestre, N. (2012). “On the mechanics of thin-walled angle column instability.” Thin- 
Walled Structures, 52, 80-89. 

Dobric, J., Filipovic, A., Markovic, Z., Baddoo, N. (2020). “Structural response to axial testing of cold-formed 
stainless steel angle columns.” Thin-Walled Structures, 156, 106986. 

EN 1993-1-4 (2006). “Eurocode 3: Design of steel structures - Part 1-4: General rules - Supplementary rules for 
stainless steels.” European Committee for Standardisation (CEN). Brussels, Belgium. 

Jandera, M., Gardner, L., Machacek, J. (2008). “Residual stresses in cold-rolled stainless steel hollow sections.” 
Journal of Constructional Steel Research, 64, 1255-1263. 

Liang, Y., Jeyapragasam, V.V.K., Zhang, L., Zhao, O. (2019). “Flexural-torsional buckling behaviour of fixed- 
ended hot-rolled austenitic stainless steel equal-leg angle section columns.” Journal of Constructional Steel 
Research, 154, 43-54. 

Rasmussen, K.J.R. (2005). “Design of angle columns with locally unstable legs.” Journal of Structural Engineering, 
131, 1553-1560. 

Riks, E. (1979). “An incremental approach to the solution of snapping and buckling problems.” International 
Journal of Solids and Structures, 15, 529-551. 

Rossi, B., Afshan, S., Gardner, L. (2013). “Strength enhancements in cold-formed structural sections - Part II: 
Predictive models.” Journal of Constructional Steel Research, 83, 189-196. 

Sarquis, F., de Lima, L., da S. Vellasco, P., Rodrigues, M. (2020). “Experimental and numerical investigation of 
hot-rolled stainless steel equal leg angles under compression.” Thin-Walled Structures, 151, 106742. 

SEI/ASCE8-02 (2002). “Specification for the design of cold-formed stainless steel structural members.” American 
Society of Civil Engineers (ASCE). Reston. 

Stang, A.H., Strickenberg, L.R. (1922). “Results of some compression tests of structural steel angles.” US Government 
Printing Office. 

Sun, Y., Liu, Z., Liang, Y., Zhao, O. (2019). “Experimental and numerical investigations of hot-rolled austenitic 
stainless steel equal-leg angle sections.” Thin-Walled Structures, 144, 106225. 

Zhang, L., Liang, Y., Zhao, O. (2020a). “Experimental and numerical investigations of pin-ended hot-rolled 
stainless steel angle section columns failing by flexural buckling.” Thin-Walled Structures, 156, 106977. 

Zhang, L., Tan, K.H., Zhao, O. (2019). “Experimental and numerical studies of fixed-ended cold-formed stainless 
steel equal-leg angle section columns.” Engineering Structures, 184, 134-144. 

Zhang, L., Tan, K.H., Zhao, O. (2020b). “Local stability of press-braked stainless steel angle channel sections: 
Testing, numerical modelling and design analysis.” Engineering Structures, 203, 109869. 

Zhang, L., Liang, Y., Zhao, O. (2021). “Laboratory testing and numerical modelling of pin-ended hot-rolled stainless 
steel angle section columns failing by flexural-torsional buckling.” Thin-Walled Structures, 161, 107395. 



 

Proceedings of the 
8th International Conference on  

Coupled Instabilities in Metal Structures 
Lodz University of Technology, Poland, July 12-14, 2021 

 
 
 
 

Linking the von Karman equations to the design of steel plates 
 

Jurgen Becque1 
 
 
Abstract 
In this paper the von Karman system of partial differential equations describing the nonlinear post-
buckling response of plates is simplified into a single equation, while taking caution to preserve the main 
mechanisms through which plates develop post-buckling reserve capacity. The resulting equation is 
solved for the case of a perfect plate using a single Fourier term, and for the case of an imperfect plate 
using two Fourier terms. Good agreement with finite element simulations, used as a benchmark, is 
obtained. The theory is further used to derive a closed form expression for the plate capacity as a 
function of the slenderness, which agrees very well with the well-known Winter equation.   
 
 
1. Introduction 
The von Karman (or Föppl-von Karman) equations comprise a system of two coupled nonlinear partial 
differential equations (Föppl 1907, von Karman 1910). They describe the post-buckling behaviour of thin 
elastic plates: 
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In these equations w is the vertical plate deflection, w0 is the initial geometric imperfection,  is the Airy 
stress function, E is the elastic modulus, t is the (constant) plate thickness, pz is the lateral pressure on 
the plate and D is the flexural plate stiffness, given by: 
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A sufficiently general solution to the von Karman equations does not exist. Instead, numerical solutions 
have been developed, typically based on finite element, finite strip or finite difference approaches. 
Sadly, this lack of an analytical closed form solution also renders the von Karman equations next to 
irrelevant in the context of the practical design of metal plates. However, a simplified version of Eqs. (1-
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2) has previously been developed by the author (Becque 2019), which condenses the system of coupled 

equations into a single equation and eliminates the Airy stress function  
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In Eq. (4) L is the length of the plate and U0 is the end shortening (Fig. 1). Eq. (4) is valid for a plate under 
uniaxial compression and the full derivation is presented in (Becque 2019). However, it is important to 
mention that the following assumptions underlie the equation: 
 

1. The cross-sectional profile of the longitudinal membrane stresses remains unchanged along the 
length of the plate. 

2. The membrane shear stresses are zero. 
3. The transverse membrane stresses are zero. 
4. The loaded edges of the plate remain straight, while the longitudinal edges are free to move 

inwards horizontally (Fig. 1). 

 

Assumption (1) is inspired by von Karman’s effective width concept, while assumption (2) is the 
extension of Vlasov’s assumption into the post-buckling range. Assumption (4) approximates the typical 
situation of a (long) plate in a plate assembly (i.e. a cross-section) under compression, where the 
transverse ‘nodal lines’ remain straight as a result of symmetry and the longitudinal edges of the plate 
are only weakly restrained against in-plane movement by bending of the adjacent plates about their in-
plane axis. The latter also justifies assumption (3), as significant membrane action is not thought to 
develop in the transverse direction of the plate for this reason. Assumptions (1-3) were verified against 
the results of an FE simulation of a square elastic plate (Fig. 2) (Abaqus 2017). The stress state is 

depicted at the moment when the maximum longitudinal membrane stress x reached 350 MPa, which 

represents an advanced post-buckled state. The leftmost diagram shows that the x contours form 

approximately vertical lines, thus confirming assumption (1). The membrane shear stress (xy) plot 
(middle) shows some localized shear stress concentrations near the corners of the plate, which reached 

up to 34 MPa. However, in the remainder of the plate xy remained limited to 5 MPa in absolute value 
(indicated by the pale green colours). Since this constitutes less than 2% of the maximum longitudinal 

membrane stress, the xy  stresses can indeed be neglected. The plot of the transverse membrane 

stresses y (right) shows some stress concentrations near the transverse edges. However, in the central 
area of the plate stresses do not exceed 19 MPa (= 5.5% of 350 MPa), justifying assumption (3).  
 
For a plate with an initial imperfection w0, Eq. (4) transforms into: 
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Figure 1: Boundary conditions of rectangular plate under uniaxial in-plane compression 
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Figure 2: Stress contours of xxy and y obtained from FE analysis 

 

 

2. Approximate solution for a geometrically perfect plate 

 

Eq. (4) has previously been solved in approximate form (Becque 2019) for a square plate without 
imperfections, by substituting the following proposed solution: 
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Eq. (7) is the solution to the classical St. Venant plate equation. In the context of Eq. (4), Eq. (7) can be 
seen as the first term of a Fourier series, which, by virtue of being the solution to the St. Venant 
equation, is dominant in the initial post-buckling range over the remaining terms. The substitution 
eventually leads to the following load-shortening relationship: 
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where P is the applied load on the plate. The above equation is plotted in Fig. 3, where it is compared to 

FE results for the case of a 200×200 mm2 plate with t = 1 mm, E = 200 GPa and  = 0.3 (Abaqus 2017). 
The FE model is fully elastic and contains a minute imperfection of 0.004 mm in order to induce buckling 
at the theoretical bifurcation point. It is seen that Eq. (8) accurately predicts the initial post-buckling 
stiffness (at 1/3 of the original pre-buckled stiffness) and provides a good representation of the post-
buckling range up to a strain of about 5-6 times the buckling strain. 
 

 
Figure 3: Comparison of predicted and experimental load-shortening behaviour 

 
 
According to von Karman’s effective width concept failure occurs when the maximum longitudinal 
membrane stress (occurring along the longitudinal plate edges) reaches the yield stress fy. It was 
previously demonstrated (Becque 2019) that, in the context of Eq. (4), this is equivalent to:  
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Using Eq. (9), Eq. (8) can be re-arranged into a Winter-type equation: 
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where Pu is the ultimate load of the plate, Py is the yield load and  is the slenderness defined as: 
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In Eq. (11) cr is the elastic buckling stress of the plate. Eq. (10) is compared to the Winter equation in 
Fig. 4. For reference, the Winter equation reads as: 
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Figure 4: Comparison of Winter curve with analytical prediction 

 
 
It is seen that both equations exhibit a similar trend. However, Eq. (10) results in significantly higher 

predictions of the plate capacity. For lower slenderness values  this discrepancy is mainly due to the 
fact that imperfections have not yet been accounted for, while for higher slenderness values it is the 
result of the approximate character of the solution proposed in Eq. (7). Indeed, it is seen in Fig. 3 that 
the actual plate behaviour is not linear in the post-buckling range, but loses stiffness at larger plate 
deformations. This effect is more important for more slender plates, which display a more extensive 
post-buckling range before yielding sets in. Both issues are rectified in the following paragraph.  
 
3. Solution for a geometrically imperfect plate 
 
The solution provided in Section 2 is further extended and refined by first including an imperfection of 
the following shape: 
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Second, an additional Fourier term is added to Eq. (7): 
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Substituting Eqs. (13-14) into Eq. (6) leads to the following system of equations in the coefficients A11 
and A13: 
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This system of equations can be solved numerically (e.g. using Solver in Excel (Microsoft 2007)) for a 
range of chosen U0 values. The resulting A11 and A13 values then determine the load P through the 
equation: 
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An example of a thus obtained load-shortening plot is shown in Fig. 5. The 200×200 mm2 plate geometry 
previously considered in Section 2 was used with A0 = L/200 = 1 mm. This curve is compared to the 
corresponding curve obtained from FE analysis of a square elastic plate with the same geometry and 
imperfection. Very good agreement was obtained up to a strain of about 20 times the buckling strain. 
 

 
 

Figure 5: Comparison of predicted load-shortening behavior with FE results 

 
 
Eqs. (15-17) can be used to derive an approximate closed form equation for the plate capacity analogous 
to Eq. (10). To achieve this, the terms in (A13)3 and (A13)2 are first neglected. This is justified by the 
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observation that the first term in Eq. (14) dominates the plate behavior. Only at higher loads much 
further into the post-buckling range does the second term grow somewhat in importance. A single 
equation then results from eliminating A13 from Eqs. (15-16). The failure criterion (Eq. 9) determines the 
plate shortening U0, while A11 can be related to the load P through Eq. (17) (in which (A13)2 is again 
ignored in comparison with (A11)2). This procedure results in the following relationship between the 

slenderness  and the plate capacity Pu: 
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In the above equation the imperfection factor  is given by: 
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while the coefficients c0-c3 and d0-d2 are listed in Table 1. 
 

Table 1. Coefficients in Eq. (18) 

c3 -0.506/  d2 0.053 

c2 0.518 + 0.858/ d1 -0.028 − 0.019 

c1 0.016 − 0.330 − 0.428/ d0 0.7872 − 0.013 − 0.014 

c0 -0.0142 − 0.014 + 0.022 + 0.076/ 

 

 

   
 

Figure 6: Comparison of theoretical strength prediction with Winter curve 

 
The predictions of Eq. (18) are compared to the Winter equation in Figure 6. An imperfection A0 of L/200 
(where L is the plate width) was included in the model, as recommended by EN1993-1-5 (CEN 2006). 
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This ‘equivalent’ imperfection takes into account geometric imperfections, as well as residual stresses. 
The agreement is quite astounding, given the initial simplifications underlying the model, and is 

maintained over the whole slenderness range up to  = 5. Figure 5 suggest that the solution with two 
Fourier terms diverges from reality beyond strains equal to approximately 20 times the buckling strain 
and, therefore, Eq. (18) should not be used for slenderness values in excess of √20 ≈ 4.5. Unlike the 
Winter curve, Eq. (18) captures the gradual transition into full yielding. However, Eq. (18) is obviously 
more cumbersome in its application and specifies the slenderness as a function of the ultimate load, 
rather than vice versa. Beyond a slenderness of about 2, Eq. (18) predicts slightly higher capacities than 
the Winter curve. While the Winter curve is known to be on the conservative side in this region, only a 
comparison with experimental data can indicate which model is more accurate. This is planned as 
further research.   
 
4. Conclusions 
 
In this paper the Föppl-von Karman equations have been simplified into a single equation, while being 
mindful of preserving the modeling of the main mechanics which govern the post-buckling behaviour of 
plates. These mechanical features first of all include the two-dimension character of plate behaviour, 
recognizing that plates deflect while displaying transverse as well as longitudinal bending, supplemented 
with twisting (as already fully accounted for by the classical St. Venant equation). In addition, however, 
the longitudinal membrane action, resulting from longitudinal fibres being ‘tensioned up’ while 
deflecting between nodal lines which are forced to remain straight, was identified as the single most 
important mechanical phenomenon to be accounted for. This superimposed tension causes additional 
compression along the plate edges, where fibres deflect less. 
An approximate solution to the simplified equation was pursued. Using a single Fourier term in the 
solution provided an excellent approximation of the actual plate behavior up to a longitudinal strain of 
about 5-6 times the buckling strain. This range could be considerably extended to about 20 times the 
buckling strain by including a second Fourier term, while an initial imperfection was also accounted for. 
The model allowed for the derivation of a closed form analytical expression for the plate capacity as a 
function of the plate slenderness, analogous to the well-known and extensively used Winter equation. 
For the latter case, where 2 Fourier terms and an initial imperfection of L/200 were included, the 
analytical solution displayed remarkable agreement with the Winter equation. The theoretically derived 
solutions also confirm that the capacity of a geometrically perfect plate is only a function of its plate 
slenderness (thus acknowledging Winter’s genius), while the capacity of an imperfect plate is a sole 

function of the plate slenderness and an imperfection factor , given by Eq. (19).  
 
 
References 
 
Abaqus (2017). Abaqus CAE 2017, Dassault Systèmes, France. 
Becque, J. (2019). “Solutions to simplified von Karman plate equations.” Proceedings of the International Colloquia 

on Stability and Ductility of Steel Structures, Prague, Czech Republic. 173-180. 
CEN (2006). Eurocode 3: Design of Steel Structures, Part 1.5: Plated Structural Elements. European Committee for 

Standardization, Brussels. 
Föppl, A. (1907). Vorlesungen Über Technische Mechanik, Druck und Verlag von B.G. Teubner. 
Microsoft (2017). Microsoft Excel, Redmond, Washington, USA. 
Von Karman, T. (1910). Festigkeitsprobleme im Maschinenbau. In: Klein, F., Müller, C., Encyklopädie der 

Mathematischen Wissenschaften, Druck und Verlag von B.G. Teubner, 311-385. 

 
 



 

Proceedings of the 
8th International Conference on  

Coupled Instabilities in Metal Structures 
Lodz University of Technology, Poland, July 12-14, 2021 

 
 
 
 

Semi-analytical solutions for the compressed thin plate with large 
displacements 

 
Mihai Nedelcu1 

 
 
Abstract 
The thin plane plates are largely used in practice as single elements or as components of the thin-walled 
members. When subjected to compression, they exhibit a large post-critical strength reserve. Various 
analytical solutions of the uniformly compressed simply supported plate with large deflections were 
reported almost a century ago, mainly solving the fundamental equations of the flat thin plates or using 
classic energy methods. Owing to several disadvantages, these solutions were not introduced in the 
design codes of thin-walled structures, instead the semi-empirical Winter formula is nowadays largely 
used. This study presents a new semi-analytical solution based on classic energy methods. The main 
innovation is brought by the considered displacement field which is far more accurate than the ones 
used by the previous formulations. The advantages over the Winter formula are the improved accuracy 
and the consideration of the initial geometric imperfections. The advantages over the numerical 
simulations are the very small number of degrees of freedom and consequently the speed of the 
geometric nonlinear analysis in the elastic domain. The proposed solutions are validated against 
numerical solutions and experimental data. 
 
 
1. Introduction  
To find the ultimate strength capacity of thin flat plates, numerous analytical and experimental studies 
were conducted, starting more than a century ago. One promising approach is to propose a 
displacement field compatible with the boundary conditions, then the strain energy of the buckled plate 
is determined, and finally the deflection degrees of freedom (DOFs) are determined based on some 
energy equilibrium criterion. Such an analytical solution of the uniformly compressed simply supported 
plate is presented in Timoshenko & Gere 1961 and apparently attributed to Lahde & Wagner 1936. This 
solution provides a good representation of the stress distribution (see Fig. 1). However, the predicted 
ultimate loads were not in agreement with the experiments and the initial geometric imperfections 
were not considered. This study follows the same technique, but the proposed displacement field is 
much improved, and the initial geometric imperfections are considered. The displacement field is 
expressed by a combination of linear functions and trigonometric series which satisfy the boundary 
conditions. The Principle of Virtual Displacements leads to a system of cubic equations with rather 
complex, yet analytical expressions for the system coefficients. The solution of this non-linear problem is 
found by using the classic Newton-Raphson method for each load increment. Validation is done by 
comparisons with the numerical results obtained from shell FE simulations developed in Abaqus. It must 
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be underlined that for a certain slenderness range, the post-1st yield strength reserve is significant, a fact 
that is largely ignored nowadays in the study of thin flat plates.  The proposed method covers only the 
elastic analysis; therefore, after the yield stress is reached in one point of the plate, the strength reserve 
is evaluated using the Abaqus simulations and empirical formulas for the ultimate strength capacity are 
proposed. The validation of the proposed formulation is done by comparisons with experimental data 
available in literature. A detailed study on this subject was recently published by the author (Nedelcu 
2020) and the method was implemented in EFFWidth (2019) - a publicly available software application 
written in Matlab.  
This paper also presents comparisons with the solutions given by the Winter formula which is currently 
used by most of the design methods for the Cold Formed Steel members (e.g. Eurocode 3, EN 1993-1-
3:2006). Fig. 1 presents the post-buckling longitudinal normal stresses for uniform axial compression.  
 

 

Figure 1: Stress distribution for the simply supported plate in uniform axial compression 

 
This complex stress distribution can be simplified by replacing it with constant longitudinal normal stress 
on an effective width beff formed by two longitudinal strips. Von Kármán et al. (1932) proposed that the 
critical load of this equivalent system is equal with the ultimate capacity of the plate, as follows: 
 

 𝜎𝑐𝑟,𝑏𝑒𝑓𝑓 =
𝑘𝜎𝜋2𝐸

12(1−𝜇2)
(

ℎ

𝑏𝑒𝑓𝑓
)

2

= 𝜎𝑚𝑎𝑥 (1) 

 
where h is the plate thickness, E and μ are the Young modulus and the Poisson’s ratio respectively, and 
kσ is a coefficient which depends on the boundary conditions (kσ = 4 for the simply supported plate). By 
considering σmax equal with the material yield stress fy, the effective width if found:  beff/b = √(σcr/fy) = 
1/λp, 
where b is the plate width, σcr is the critical stress of the entire plate without imperfections, and λp is the 
normalized slenderness. Winter adjusted the formula obtained by von Kármán et al. to match the 
experimental data obtained on a large series of tests (Winter 1947) and the Winter equation is given is: 
beff/b = 1/λp (1-0.22/ λp). 
 
2. The proposed semi-analytical solution 
Fig. 2 presents the analysed simply supported plate. 
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Figure 2: Simply supported plate  

The loaded edges are restrained to have identical longitudinal displacements u. This phenomenon is in 
accordance with the usual experiments when the load P is transmitted by a rigid block. If multiple waves 
occur along the longitudinal axis, identical u displacements occur along the lines parallel to y-axis having 
null vertical displacements w. 
This plate was modelled in Abaqus using shell finite elements, and then the Geometric Nonlinear 
Analysis with Imperfections (GNIA) was performed for several configurations varying the plate 
slenderness via material properties and plate geometry. The displacement field was next extracted, and 
then it was expanded in combinations of linear functions, single and double trigonometric series. So far, 
the best candidate of the assumed displacement field was found as follows: 
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where n determines the number of terms considered for both single and double trigonometric series, 
and w0 is the initial geometric imperfection. Next, one constructs the DOFs vector {d} = {uL ui uij  vL vij vLi  
vi wij}

T  for i, j = 1..n, and the shape vectors {φu}, {φv} and {φw} which contain the functions of x and y as 
given next: 
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Eq. 2 is rewritten as follows: 

 
 𝑢 = {𝜑𝑢}{𝑑}     𝑣 = {𝜑𝑣}{𝑑}       𝑤 = {𝜑𝑤}{𝑑}     𝑤0 = {𝜑𝑤} {𝑑0} (4) 

 
where {d0} has the same size as {d} and contains the known amplitudes of the initial geometric 
imperfections. Using the kinematic and constitutive relations 
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𝜀𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

+
𝜕𝑤0

𝜕𝑥

𝜕𝑤

𝜕𝑥

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
+

1

2
(

𝜕𝑤

𝜕𝑦
)

2

+
𝜕𝑤0

𝜕𝑦

𝜕𝑤

𝜕𝑦

  𝛾𝑥𝑦 =
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
+

𝜕𝑤

𝜕𝑥

𝜕𝑤

𝜕𝑦
+

𝜕𝑤0

𝜕𝑥

𝜕𝑤

𝜕𝑦
+

𝜕𝑤0

𝜕𝑦

𝜕𝑤

𝜕𝑥

       [

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

] =
𝐸

1−𝜇2 [
1 𝜇
𝜇 1
0 0

 0
 0

 
1−𝜇

2

] [

𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

] (5) 

 
the strain energy having Membrane and Bending components, is next computed as follows: 
 

 

𝑊 = 𝑊𝑀 + 𝑊𝐵 =
ℎ

2
∫ ∫ (𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦)

𝑏

0
𝑑𝑥𝑑𝑦 +

𝑎

0

+ 
1

2
𝐷 ∫ ∫ [(

𝜕2𝑤

𝜕𝑥2 )
2

+ (
𝜕2𝑤

𝜕𝑦2 )
2

+ 2𝜇
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2 + 2(1 − 𝜇) (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑥𝑑𝑦
𝑏

0

𝑎

0

 (6) 

where D = Eh3/12/(1-μ2) is the plate bending stiffness. The external work ∏ext is created only by the load 
P acting on its corresponding displacement uL. Using the Principle of Virtual Displacements, the variation 
of the strain energy is equal with the variation of external work δW = δ∏ext. This expression leads to the 
well-known matrix formulation: 
 

 [𝐾𝐿 + 𝐾𝑁𝐿({𝑑})]{𝑑} = {𝑃} (7) 
 
where [KL] is the linear stiffness matrix, [KNL] is the geometric nonlinear stiffness matrix, {d} is the DOFs 
vector, and {P} is the load vector which apart from the first component equal with the compression 
resultant load P, it has only null components. The order of the square stiffness matrices as well as the 
size of {d} and {P} is equal with nDOF = 3n2+3n+2. The expressions of [KL] and [KNL] depending on the 

shape vectors {φu}, {φv} and {φw} are given in (Nedelcu 2020). Eq. 7 represents a system of non-linear 
third-order algebraic equations in which the components of {d} are the unknowns of the problem. To 
solve this system of equations an incremental-iterative process is required, and the Newton-Raphson 
method was used. Thus, GNIA provides the plate behaviour in the elastic domain. For each loading step 
the von Mises stresses are calculated on the entire mid-thickness surface. The analysis stops when the 
maximum of the von Mises stresses reaches the yield stress fy. The yielding outside the mid-thickness 
can not be represented by the proposed formulation, but fortunately for simply supported thin plates 
this phenomenon does not have a significant effect on the global structural response. 
The semi-analytical solution has symbolic stiffness matrices and 2-3 orders of magnitude less DOFs than 
the numerical solutions. For these two reasons the proposed formulation is much faster than the 
numerical FE formulations – 2-3 seconds on an average computer, compared with 5-10 minutes for 
Abaqus, depending on the mesh density and FE type. 
 
3. Parametric study 
For this study the number of terms from Eq. 2 was chosen n = 4, leading to 62 DOFs. A simply supported 
square plate with dimensions a = b =100 mm is subjected to uniform compression. The material 
properties are E = 210 GPa, μ = 0.3, fy = 350 MPa; 16 values were considered for the plate thickness h in 
the range (3.2 - 0.4) mm, leading to the range (1.276 - 10.206) for the slenderness parameter 

𝜆 = 𝑏/ℎ√𝑓𝑦/𝐸. The minimum value of λ corresponds to the case when the Winter formula provides no 

reduction of the plate width (beff = b). The maximum value of λ corresponds to the application limit of 
the proposed solution - for higher slenderness, the assumed displacement field is no longer accurate 
and more DOFs are needed. In practice, for single plates and Cold-Formed Steel members, the plate 
slenderness is usually under this value. The initial geometric imperfection has a single halfwave on each 
direction, giving w0_11≠0 and all the other coefficients of w0 are null. In this study 5 values for the 
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maximum imperfection were considered, namely w0_11 = (0.10, 0.25, 0.50, 0.75, 1.00)%b. While most of 
the experiments are reporting imperfection amplitudes in the range of (0.1 - 0.25)%b, the Eurocode EN 
1993-1-5 (2006) recommends an equivalent imperfection amplitude of 0.50%b.  In total, this parametric 
study consists of 80 analyses (16 thickness values and 5 imperfection amplitude values), all performed 
using the public application EffWidth written by the author. The 1st yield load Py is computed, and the 
corresponding effective width is extracted based on the simple relation beff_y= Py/(h∙fy). For validation 
and ultimate strength capacity evaluation, numerical analyses using S4 shell elements were performed 
in Abaqus. The number of DOFs in Abaqus is 15606 (2601 nodes) in comparison with the 62 DOFs of the 
proposed formulation. Fig. 3 presents the state of stress in the middle plane at 1st yield for the case h = 
w0_11 = 1mm: the von Mises stresses, the normal and shear, all based on the proposed formulation. The 
stress distributions were found using shell finite element analysis (SFEA) for all cases and the differences 
with respect the von Mises and normal stresses versus the EffWidth stresses are under 5%. However, 
the shear stresses are not as well represented and the Abaqus values can be 3-4 times larger than the 
ones given by EffWidth. Owing to  their small values, the shear stresses do not significantly affect the 
von Mises stresses and the global structural behaviour. 
 

 
Figure 3: State of stress in the middle plane at 1st yield for h = w0_11 =1mm 

 
Fig. 4-8 present different results of this parametric study, with one figure for each imperfection 
amplitude w0_11. First, the effective width is calculated using the Winter formula (×). The same 

characteristic is calculated at the 1st yield by means of SFEA (♦) and the proposed formulation (▲). A 
procedure for calculating the effective width at ultimate load is later presented and the ratio between 
the predicted values and the SFEA ones are also shown in Fig. 4-8 (O). 
 

 
Figure 4: 1

st
 yield and ultimate strength estimates for w0_11 = 0.10%b 
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Figure 5: 1
st

 yield and ultimate strength estimates for w0_11 = 0.25%b 

 
Winter formula. The Winter predictions are not depending on the imperfection amplitudes and the 
corresponding SFEA values clearly show their dependence of w0_11. One can see that for w0_11 < 0.5%b, 
the Winter formula provides relatively good estimates, between 0.9-1.054 of the ultimate strength 
capacities given by SFEA. This was expected, as the Winter formula was calibrated experimentally for 
imperfection amplitudes commonly met in practice. The unsafe predictions of the ultimate strength are 
under 5.4%, while the safe predictions go up to 10%, usually for very slender plates. If one goes to 
higher imperfection amplitudes, the Winter formula is no longer accurate, giving differences up to 15% 
on the unsafe side, while maintaining a maximum of 10% on the safe side. 

 

 

Figure 6: 1
st

 yield and ultimate strength estimates for w0_11 = 0.50%b 

 

Figure 7: 1
st

 yield and ultimate strength estimates for w0_11 = 0.75%b 
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Figure 8: 1
st

 yield and ultimate strength estimates for w0_11 = 1.00%b 

 
Proposed formulation – 1st yield strength capacity. Comparing the effective widths based on the 1st yield 
load provided by the proposed formulation and SFEA, one can see the satisfactory agreement. The 
maximum difference is 5% for λ = 2.041 and w0_11 = 0.10%b. An interesting phenomenon must be here 
highlighted. By checking either of the 1st yield ratios (SFEA or proposal) one can see a significant post-1st 
yield strength reserve for slenderness λ < 7-8 (it depends on the imperfection amplitude). Even for 
common imperfections (w0_11 = 0.25%b) this reserve can be up to 11%, and it is larger than 5% in the 
range of λ = (3, 6.5). For higher imperfection amplitudes, this favourable reserve can be almost 20% of 
the ultimate capacity. To the author’s knowledge this phenomenon was not presented and quantified 
until present time, the general belief being that the ultimate and the 1st yield loads are practically 
identical.  
Proposed formulation – ultimate strength capacity. As presented in the previous paragraph there is a 
certain strength reserve after the 1st yield which depends on the slenderness and imperfection 
amplitude. The ultimate load or the corresponding effective width can be represented as Pu = Py(1+rpl), 
where Pu is the ultimate load, Py  is the 1st yield load and rpl represents the strength reserve after the 1st 
yield, as a percentage of Py. Based on SFEA values regarding the 1st yield and the ultimate load, a 
trendline formula of 4th order was developed for rpl, given as follows: 
 

 𝑟𝑝𝑙 = (−7.246𝑤0_11 + 0.212)λ4 + (150𝑤0_11 − 3.79)λ3 + (−1165𝑤0_11 + 0.212)λ2 

                                            +(3687𝑤0_11 − 49.47)λ − 2443𝑤0_11 + 33.65 (8) 

 
The above equation was developed for the plate slenderness λ < 8, considering that over this value the 
post-1st yield strength reserve is not significant. The application effect of Eq. 8 to the 1st yield effective 
width calculated with the proposed formulation is presented in Figs. 4-8. The goal of this procedure is to 
emphasize that even for large imperfections, very good results can be obtained from the GNIA based on 
the proposed formulation if the post-1st yield strength reserve is considered. If the strength reserve is 
not considered, GNIA still predicts safe estimates (with few exceptions - all the unsafe estimates being 
under 5% of the ultimate load predicted by SFEA) but with significant underestimations of the plate 
ultimate capacity depending on the imperfection amplitudes. 
 
4. Experimental validation 
The considered tests were reported by Dwight and Moxham (1969) and they were made by Harrison, 
Chin and Moxham on square welded box-columns after the stress-relieved technique was applied. The 
initial imperfection shapes or magnitudes are not given, therefore two plausible values were considered 
in this study (0.1%b and 0.25%b). The material properties are E = 204 GPa and μ = 0.3. Table 2 presents 
in the first 6 columns the experimental data ordered in the ascending order with respect λ. The next four 
columns present the ratios between the effective width determined with the proposed formulation and 
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the one reported from tests. For the plates with very low slenderness (λ < 3), the post 1st yield strength 
reserve calculated with Eq. 8 is under 5% and it is disregarded. The 1st yield strength estimates for these 
cases are in very good agreement with the experimental data. 
 

Table 1. Test and numerical results for square welded box-columns with stress-relieved 

      beff _/ beff_test 

Test h fy b/h λ beff_test / h w0_11 = 0.1%b w0_11 = 0.25%b Winter 

 
[mm] [MPa] 

   
1

st
 yield ultimate 1

st
 yield ultimate  

Harrison RB2 11.1 227 31.2 1.04 30.4 1.02 1.02 1.01 1.01 1.03 

Harrison RC1 9.5 233 40.1 1.36 39.9 1.00 1.00 0.97 0.97 0.98 

Harrison RD2 7.9 236 49.9 1.70 47.6 1.01 1.01 0.93 0.93 0.89 

Harrison RD1 7.9 236 50 1.70 46 1.05 1.05 0.96 0.96 0.92 

Moxham RT1 12.7 312 48 1.88 43.7 1.01 1.01 0.93 0.93 0.87 

Moxham RT2 12.7 312 48 1.88 43.5 1.01 1.01 0.93 0.93 0.88 

Harrison RE1 6.4 255 59.4 2.10 47.5 1.01 1.01 0.93 0.93 0.92 

Harrison RE2 6.4 255 60 2.12 46.9 1.04 1.04 0.94 0.94 0.93 

Chin RG1 5.6 375 65 2.79 36.9 1.03 1.03 0.98 1.04 1.03 

Chin RG2 5.6 375 66 2.83 38.3 0.99 0.99 0.94 1.00 1.00 

Chin RF3 4.8 385 80.4 3.49 38.4 0.96 1.04 0.93 1.03 1.02 

Chin RF4 4.8 385 80.8 3.51 40.2 0.92 1.00 0.89 0.98 0.97 

 
For the last two tests, one can see the effect of considering the strength reserve with respect the 
ultimate capacity (the underlined values from Table 2), especially for the last case when the 1st yield 
capacity is below 8% of the experimental one, but the ultimate capacity is in perfect agreement with the 
experimental value. 
For an assumed imperfection amplitude of 0.25%b, the post 1st yield strength reserve is larger than 5% 
for the last four tests (λ > 2.5), and again by considering this effect the estimates of the ultimate capacity 
are improved in comparison with the experimental data. From the last column one can see that the 
Winter predictions are inferior to the ones given by the proposed formulation, the maximum error is 
13% on the safe side and 3% on the unsafe side. Fig. 9 presents the results of the last five columns of 
Table 2. 
 

 

Figure 9: Winter and proposed formulation results against experimental results  

 
Other experimental validations of the proposed solution are provided in Nedelcu (2020). 
 
5. Conclusions 
This paper presented a semi-analytical solution for the uniform compressed simply supported imperfect 
flat plate. The solution starts with a complex displacement field with multiple DOFs, described by a 
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combination of linear functions, single and double trigonometric series, and it is based on the Principle 
of Virtual Displacements. The solution yields a system of cubic equations that can be solved by an 
incremental-iterative process. The main advantage versus the numerical methods (as FEM) lies in the 
analytical expressions of the equation system coefficients, an advantage that makes the method fast 
and versatile. Also, the number of DOFs is at least 2 orders of magnitude fewer than the one used by 
FEM.  
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Analytical solutions for the GNI analysis for lateral-torsional buckling of thin-
walled beams with doubly-symmetric and mono-symmetric cross-sections  

 
Muhammad Z. Haffar1, Sandor Adany2 

 
 
Abstract 
In this paper a novel analytical solution is presented for the geometrically nonlinear analysis of beams 
subjected to lateral-torsional buckling, by assuming an initial geometric imperfection in the form of the 
buckled shape from a linear buckling analysis. The novelty of the solution is that it takes into consideration 
of the changing geometry as the load is increasing. Numerical results by the new analytical formula are 
compared to those from other methods. The results suggest that new formulae are able to correctly 
capture the most important elements of the behavior.   
 
 
1. Introduction 
When a beam is subjected to bending, lateral-torsional buckling (LTB) is a potential failure mode. LTB has 
extensively been studied in the past decades. It can be observed, however, that the vast majority of the 
research was devoted to beams with doubly-symmetrical cross-sections subjected to major-axis bending. 
In the practice mono-symmetric and asymmetric cross-sections are used, too, they are especially typical 
in cold-formed steel construction. It is, therefore, important to understand the LTB behavior of beams 
with general cross-sections.  
There is a trend nowadays to build more and more complete (finite element) models, to apply realistic 
loads, to (even if approximately but) directly consider imperfections, and to perform nonlinear analysis in 
order to get the load bearing capacity of the structure. If the material is assumed to be elastic, the analysis 
is popularly termed as GNI analysis, which is in the focus of the reported research.  
Analytical solution for the linear buckling (LB) problem (which means the critical load calculation and 
buckled shape determination) of simple beams is available for general cross-sections, see Glauz (2017). 
Some analytical solution for the geometrically nonlinear problem with initial imperfection (GNI) is 
available, too, see Agüero et al. (2015), which is the generalization of Young’s classic solution for an 
imperfect compressed column (Young, 1807). Recently it was shown by the authors, however, that there 
is discrepancy between the results predicted by the classic analytical GNI solution and those calculated by 
shell finite element GNI analyses, see Haffar et al. (2019). The discrepancies can be quite important. Also, 
the discrepancies are not limited to the difference of certain numerical values, but some basic features of 
the behavior are affected. For example, while the classic analytical solutions predict symmetric bifurcation 
for LTB, independently of the cross-section, shell finite element GNI analysis suggests asymmetric 
bifurcation in some cases. Moreover, while the classic analytical solutions predicts that the maximal 
moment equals the critical moment, numerical results do not always confirm this prediction. 

                                                        
1 PhD Student, Budapest University of Technology and Economics, <muhammad.ziad.haffar@ emk.bme.hu> 
2 Full Professor, Budapest University of Technology and Economics, <sadany@epito.bme.hu> 
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In order to understand the reasons of the experienced differences, some fundamental problems are 
revisited in the reported research, namely: the analytical solution for the lateral-torsional behavior of 
beams with initial geometrical imperfections. In order to have closed-formed solutions, the simplest 
supports and loading conditions are assumed: fork supports and uniform bending (resulted from two 
opposing end moments), see Fig. 1.  
 

 
Figure 1: Simply supported thin-walled beam in uniform bending  

 
2. Classic analytical solution for doubly-symmetrical cross-sections 
In classic LB and GNI analytical solutions for LTB the main assumptions are as follows: (i) the primary and 
secondary displacements are independent, (ii) the second-order effects (e.g., expressed by the geometric 
stiffness matrix) are defined on the original undeformed beam (in other words: by assuming the primary 
stress distribution), (iii) small displacements are assumed and the nonlinearity of the strain-displacement 
relationship is considered by the Green-Lagrange strains, (iv) for simple supported beams the secondary 
displacements are half-sine waves, i.e., 
 

 𝑊 = 𝑊𝑚sin(
𝜋𝑥

𝐿
) ,      𝑉 = 𝑉𝑚sin(

𝜋𝑥

𝐿
) ,    ∅ = ∅𝑚sin (

𝜋𝑥

𝐿
) (1) 

 

where 𝑊𝑚, 𝑉𝑚and ∅𝑚  are the amplitudes for the vertical and lateral translations and for the twisting 
rotation, respectively, x is the longitudinal coordinate axis, and L is the beam length. A major axis 𝑀𝑦 

bending moment is considered, which causes uniform bending along the beam in the vertical x-z plane. 
By using e.g. the energy method, the total potential can be expressed by the displacement parameters 
(𝑊𝑚, 𝑉𝑚, ∅𝑚), then the theorem of stationarity of potential energy leads to a system of linear equations, 
which, in other words, is a generalized eigen-value problem. In the case of doubly-symmetric cross-section 
and principal-axis bending, this can be written as: 
 

 [

𝐹𝑦 0 0

0 𝐹𝑧 0
0 0 𝐹𝑥

] . [
𝑊𝑚

𝑉𝑚
∅𝑚

] + [

0 0 0
0 0 𝑀𝑦

0 𝑀𝑦 0
] . [

𝑊𝑚

𝑉𝑚
∅𝑚

] = [
0
0
0
] (2) 

 

where the 𝐹𝑥, 𝐹𝑦and 𝐹𝑧 symbols are defined as follows: 
 

𝐹𝑦 =
𝜋2𝐸𝐼𝑦

𝐿2
, 𝐹𝑧 =

𝜋2𝐸𝐼𝑧
𝐿2

 ,       𝐹𝑥 = 𝐺𝐼𝑡 +
𝜋2𝐸𝐼𝑤

𝐿2
 

 

where 𝐼𝑦  and 𝐼𝑧  are the second moment of areas calculated for the y-axis and z-axis, respectively, 𝐼𝑤  is 

the warping constant, 𝐼𝑡  is the torsion constant, E and G are the modulus of elasticity and the shear 
modulus, respectively. The first matrix is the Ke elastic stiffness matrix, while the second one is the Kg 

(3) 
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geometric stiffness matrix of the problem. The first equation can be eliminated, i.e., the secondary 
displacements in the plane of the bending do not lead to instability. The eigen-values are the 𝑀𝑐𝑟 critical 
moment values. By back-substituting the critical moment, we get the buckled shape with lateral 
translation and twisting rotation.  
If an initial geometric imperfection is assumed in the form of this buckling shape, the above derivation 
can similarly be completed, however, the right-hand side of Eq. (2) will not be zero any more but will 
depend on the amplitude of the initial imperfect geometry. 
 

 [

𝐹𝑦 0 0

0 𝐹𝑧 0
0 0 𝐹𝑥

] . [
𝑊𝑚

𝑉𝑚
∅𝑚

] + [

0 0 0
0 0 𝑀𝑦

0 𝑀𝑦 0
] . [

𝑊𝑚

𝑉𝑚
∅𝑚

] = [

0
−𝐹 𝑧𝑉𝑚,𝑖𝑛𝑖

−𝑀𝑐𝑟𝑉𝑚,𝑖𝑛𝑖

] (4) 

 

Again, the first equation has no role, while from the other two equations the actual value of the 
displacement amplitudes can be calculated. This leads to the well-known formula for the displacement 
amplification (also known as Young’s formula): 
 

𝑉𝑚 = 𝑉𝑚,𝑖𝑛𝑖

1

1 − 𝑀𝑦/𝑀𝑐𝑟
,     ∅𝑚 = ∅𝑚,𝑖𝑛𝑖

1

1 − 𝑀𝑦/𝑀𝑐𝑟
 

 

Similar derivations can be done for mono-symmetric or non-symmetric cases. For the critical load and 
buckled shape determination for general cross-sections, see Glauz (2017). Some classic analytical solution 
for the geometrically nonlinear problem with initial imperfection (GNI) is available in Agüero et al. (2015). 
 
3. Advanced analytical solution 
When the finite element method is applied to a similar problem, there are some major differences: (i) the 
load is applied in increments and/or iteration is used, which means that the actual stiffness of the member 
is updated during the analysis as the member deforms, (ii) the primary and secondary displacements are 
not separated, (iii) there is no predefined sinusoidal shape for the displacements, and (iv) depending on 
the selected finite element there might be further differences, too. The aim here is to directly consider at 
least the first two of the above factors in the analytical solution for the GNI analysis.  
The energy method was employed. For the primary displacements a quadratic function is used (in 
accordance with the first-order solution), while for the secondary displacements half-sine-waves are 
assumed. The displacement functions are as follows: 
 

 𝑊 = 𝑊𝑚
4

𝐿2
(𝐿 − 𝑥)𝑥,      𝑉 = 𝑉𝑚sin(

𝜋𝑥

𝐿
) ,     ∅ = ∅𝑚sin(

𝜋𝑥

𝐿
) (6) 

 

with the initial geometry as: 
 

 𝑉𝑖𝑛𝑖 = 𝑉𝑚,𝑖𝑛𝑖sin(
𝜋𝑥

𝐿
),     ∅𝑖𝑛𝑖 = ∅𝑚,𝑖𝑛𝑖sin (

𝜋𝑥

𝐿
) (7) 

 

We assume that the load is applied in increments. After a certain number of increments, the load is 𝑀𝑦1, 

and the corresponding displacement amplitudes are: 𝑊𝑚1, 𝑉𝑚1 and ∅𝑚1. Then the goal is to find the 
displacement increments, 𝚫𝐝, as the load is further increased by Δ𝑀𝑦. The derivations are not shown 

here, but finally we got the following system of equations. 
 

 𝐊𝐞𝚫𝐝 + 𝑀𝑦2𝐊𝐠𝚫𝐝 = 𝚫𝐟 (8) 
 

with 
 𝑀𝑦2 = 𝑀𝑦1 + Δ𝑀𝑦 (9) 

 

(5) 



 4 

where 
 

 𝚫𝐝 = [
Δ𝑊𝑚

Δ𝑉𝑚
Δ∅𝑚

]   𝐊𝐞 =

[
 
 
 
 𝐹𝑦

64

𝜋2𝐿
0 0

0 𝐹𝑧
𝜋2

2𝐿
0

0 0 𝐹𝑥
𝜋2

2𝐿]
 
 
 
 

   𝐊𝐠 =

[
 
 
 
 0 0 −∅𝑚1

2

𝐿

0 0
𝜋2

2𝐿

−∅𝑚1
2

𝐿

𝜋2

2𝐿

𝜋2

𝐿
𝛽𝑧 + ∅𝑚1

4𝜋

3𝐿
𝛽𝑦]

 
 
 
 

 (10) 

 

 𝚫𝐟 =

[
 
 
 
 −𝑀𝑦2

8

𝐿
+ 𝑀𝑦2∅𝑚1

2 2

𝐿
− 𝑊𝑚1𝐹𝑦

64

𝜋2𝐿

−𝑀𝑦2∅𝑚1
𝜋2

2𝐿
− (𝑉𝑚1 − 𝑉𝑚,𝑖)𝐹𝑧

𝜋2

2𝐿

−𝑀𝑦2𝑉𝑚1
𝜋2

2𝐿
− 𝑀𝑦2∅𝑚1

𝜋2

𝐿
𝑧𝑗 − 𝑀𝑦2∅𝑚1

2 4𝜋

3𝐿
𝑦𝑗 + 𝑀𝑦2𝑊𝑚1∅𝑚1

2

𝐿
− (∅𝑚1 − ∅𝑚,𝑖)𝐹𝑥

𝜋2

2𝐿]
 
 
 
 

 

 

where 𝑦𝑗 and 𝑧𝑗  are non-symmetry factors defined as follows: 
 

𝑦𝑗 = 𝑦𝑆 − 0.5 ∫ (𝑦2 + 𝑦2)
𝐴

𝑦 𝑑𝐴  and  𝑧𝑗 = 𝑧𝑆 − 0.5 ∫ (𝑦2 + 𝑦2)
𝐴

𝑧 𝑑𝐴 
 

where 𝑦𝑆, 𝑧𝑆 are the coordinates of shear center relative to the centroid. 
The above equation system can be solved analytically. By introducing 
 

𝑀̂𝑐𝑟
2

= 𝑀𝑐𝑟
2 − 2𝑀𝑐𝑟𝐹𝑧𝑧𝑗 

 

the displacement increments can be written as follows. 
 

Δ𝑊𝑚 =
−𝑀𝑦2

𝜋2

8𝐹𝑦
[
𝑀̂𝑐𝑟

2

𝑀𝑦2
2 − 1] − 𝑉𝑚,𝑖∅𝑚1

𝜋2𝐹𝑧

32𝐹𝑦
+ ∅𝑚,𝑖∅𝑚1

𝑀̂𝑐𝑟
2

𝑀𝑦2

𝜋2

32𝐹𝑦
− ∅𝑚1

𝜋𝐹𝑧𝑦𝑗

3𝐹𝑦
−

𝐹𝑧𝑧𝑗𝜋
2

4𝐹𝑦

𝑀̂𝑐𝑟
2

𝑀𝑦2
2 − 1 + ∅𝑚1

8𝐹𝑧𝑦𝑗

3𝜋𝑀𝑦2
+

2𝐹𝑧𝑧𝑗

𝑀𝑦2
− ∅𝑚1

2 𝐹𝑧

8𝐹𝑦

− 𝑊𝑚1 

 

Δ𝑉𝑚 =
𝑉𝑚,𝑖 + ∅𝑚1

𝑀𝑦2

2𝐹𝑦
− ∅𝑚,𝑖

𝐹𝑥

𝑀𝑦2

𝑀̂𝑐𝑟
2

𝑀𝑦2
2 − 1 + ∅𝑚1

8𝐹𝑧𝑦𝑗

3𝜋𝑀𝑦2
+

2𝐹𝑧𝑧𝑗

𝑀𝑦2
− ∅𝑚1

2 𝐹𝑧

8𝐹𝑦

− (𝑉𝑚1 − 𝑉𝑚,𝑖) 

 

Δ∅𝑚 =
−𝑉𝑚,𝑖

𝐹𝑧

𝑀𝑦2
− ∅𝑚1

𝐹𝑧

2𝐹𝑦
+ ∅𝑚,𝑖

𝑀̂𝑐𝑟
2

𝑀𝑦2
2

𝑀̂𝑐𝑟
2

𝑀𝑦2
2 − 1 + ∅𝑚1

8𝐹𝑧𝑦𝑗

3𝜋𝑀𝑦2
+

2𝐹𝑧𝑧𝑗

𝑀𝑦2
− ∅𝑚1

2 𝐹𝑧

8𝐹𝑦

− ∅𝑚1 

 
 
4. Numerical studies  
 
4.1. Doubly-symmetric I-sections 
The expressions for the displacement increments can be simplified if the cross-section is doubly 
symmetric, i.e. if 𝑦𝑗 = 𝑧𝑗 = 0. Moreover, it can also be considered that the initial shape is the buckling 

shape, therefore, the initial twist and initial lateral translation are dependent on each other. Still, it is clear 
that the second-order lateral translation and twisting rotation are different from those predicted by the 
Young’s formula. Moreover, the formulae for 𝑉 and ∅ are different. However, an important characteristic 
of these formulae is that if the sign of the initial geometry is reversed then (i) the vertical 𝑊 displacement 
is unchanged, (ii) the sign of the lateral increment is reversed, and (iii) the sign of the twisting rotation 

(14) 

(15) 

(16) 

(13) 

(11) 

(12) 
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increment is reversed. This also means that a symmetric bifurcation is predicted (as the initial 
displacement converges to zero).  
As the bending moment increases, the denominator of the formulae can decrease to zero, which identifies 
singularity. From the formulae it can be seen that the singularity belongs to a bending moment smaller 

than 𝑀𝑐𝑟. The distance of the singularity to 𝑀𝑐𝑟  is largely dependent on the twisting rotation (squared), 
and since the whole theory is based on the assumption that the rotations are small, the bending moment 
where singularity happens is only marginally smaller than 𝑀𝑐𝑟 . 
A final theoretical observation is that the primary (𝑊) and secondary (𝑉 and ∅) displacements are not 
independent. However, the secondary ones are not affected by the primary one, only the primary one is 
affected by the secondary ones. 
To illustrate the results, two members are considered. Both are simply supported and subjected to 
uniform major-axis bending, and both have doubly-symmetric I-shaped sections. The depth of each 
section is 200 mm, the flange and web thicknesses are 20 mm. One cross-section has a flange width of 
50 mm (referred to as narrow I-section), the other has a flange width of 200 mm (referred to as wide I-
section). The member length is 2 m, and standard steel material is considered. The initial value of the 
lateral translation was set to 2 mm, which is 1/1000 of the length. 
The GNI analyses are performed by the newly developed updated analytical formulae, by using a large 
number of load incremental steps. Moreover, the GNI analyses have been performed by shell finite 
element method, using the commercial Ansys software (Ansys, 2020), by using the so-called shell181 finite 
elements. The results are summarized in Figs. 2 and 3. Only the results with the positive initial lateral 
translations are shown, however, the plots with negative initial lateral translations would look exactly the 
same. For reference, the results from the Young-formula are plotted, too. 
The plots demonstrate that the second-order lateral translation and twisting rotation are smaller than 
what the Young-formula predicts. The deviation increases as the moment increases. It can also be 
observed that: the wider the flanges are, the larger the deviation from the Young-prediction is. Though 
the vertical, primary displacement is slightly different from the first-order solution (which is a straight line 
in the load-displacement plot), the deviation from the first-order solution is rather small.   
 

 
Figure 2: Load-displacement plots, narrow I-section  
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Figure 3: Load-displacement plots, wide I-section  

 
A general observation is (which is relevant to all the other examples, too), that the actual values from the 
analytical solution and from the shell FEM are not identical, even though the tendencies are rather similar. 
It is important to understand that exact agreement cannot be expected due to the differences between 
the two models. One difference is that in the shell FE model the longitudinal distribution of the 
displacements can slightly be different from those assumed in the analytical model. However, almost 
certainly other factors have much larger effect, namely those deformations in the shell model which are 
neglected in the analytical model: in-plane shear deformations, small localized plate bending 
deformations, and also out-of-plane shear deformations (since the shell181 finite element of Ansys is 
based on the Reissner-Mindlin plate theory). The differences between the analytical and shell FEM results 
are not limited to the secondary displacements, but considerable differences are experienced in the 
critical moments as well as in the primary displacements (see the right plots in Figs. 2 and 3).  
 
4.2. Mono-symmetric cross-sections, bending in the symmetry plane  
Now we consider a mono-symmetric cross-section. The axis of symmetry is the z-axis, i.e.  𝑦𝑗 = 0, hence 

the bending is acting in the symmetry plane. The expressions in Eqs. (14)-(16) for the displacement 
increments can slightly be simplified. By analyzing the formulae for the lateral translation and for the 
twisting rotations, it can be seen that, again, they are different from the Young-formula and from each 
other. It can be understood that if the sign of the initial geometry has no real effect, a symmetric 
bifurcation is predicted (as the initial displacement converges to zero).  
To illustrate the results, two cases are considered, with identical mono-symmetric T-shaped sections. The 
width and depth of the cross-section are 200 mm, the flange and web thicknesses are 20 mm. The 
member length is 2 m, and standard steel material is considered. The initial value of the lateral translation 
was set to 2 mm, which is 1/1000 of the length. The only difference between the two analyzed cases is 
that in the first case the flange is in tension, while in the second case the flange is in compression. 
The results are summarized in Fig. 4. Only the lateral translation results are plotted, but considering both 
positive and negative initial values. The plots demonstrate that the behavior is symmetric. Moreover, the 
second-order lateral translation is smaller than what the Young-formula predict, similarly what we have 
seen in the case of the doubly-symmetric I-section. In this case there is a further factor: the sign of the 
bending moment. The results are clearly dependent on whether the flange is in tension or compression.  
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Figure 4: Load-displacement plots, T-sections  

 

4.3. Mono-symmetric cross-sections, bending perpendicular to the symmetry plane  
Now we consider mono-symmetric cross-sections where the axis of symmetry is the y-axis, i.e.  𝑧𝑗 = 0. 

The bending is still in the vertical plane, that is in a plane perpendicular to the symmetry plane. The 
expressions for the displacement increments in Eqs. (14)-(16) can be simplified. The most important 
observation is that the absolute values of the denominators of the formulae are dependent on the sign of 
the initial displacement. This means that the magnitudes of both the primary (vertical) and secondary 
displacements are influenced by whether the initial displacement is considered with positive or negative 
sign. This also means asymmetric bifurcation. Since asymmetric bifurcation is more sensitive to 
imperfections compared to symmetric ones, this is an important difference which potentially influences 
the design resistance, too.  
As the bending moment increases, the denominator of the formulae can decrease to zero, which identifies 
singularity. This singularity point is affected by the sign of the initial displacement: depending on the sign, 
the singularity belongs to a bending moment smaller or larger than 𝑀𝑐𝑟 . The distance of the singularity to 
𝑀𝑐𝑟  is mostly dependent on the twisting rotation. Even though the whole analytical solution is based on 
the assumption that the rotations are small, the bending moment where singularity happens is non-
negligibly different from 𝑀𝑐𝑟 , as the following numerical examples prove. 
To illustrate the results, two U-shaped channel-sections are considered. The depth of the cross-sections 
is 200 mm, the plate thicknesses is 20 mm, the member length is 2 m, and standard steel material is 
considered. The difference between the considered two cross-sections is the flange width, the two values 
are 50 mm and 100 mm. The initial value of the lateral translation was set to 2 mm, which is 1/1000 of 
the length, both with positive and negative sign. 
The results are summarized in Fig. 5. Only the lateral translation results are plotted, but considering both 
positive and negative initial values. The asymmetric nature of the behavior can clearly be seen. In this 
actual case if the initial lateral translation is positive, the amplification is significantly smaller than the one 
predicted by the Young-formula. At the same time, the bending moment can exceed the critical moment. 
However, if the initial lateral translation is negative, singularity is reached well below the critical moment, 
and the amplification is similar to that predicted by the Young-formula. (In fact, the amplification can even 
be larger.) It can also be observed that the asymmetry of the behavior is smaller for the narrower cross-
section. Even though the analytical and shell FEM results are not identical, the tendencies of the results 
are the same from both methods.  

M

M



 8 

   
Figure 5: Load-displacement plots, U-section  

 
5. Conclusions 
In this paper new, updated analytical solutions were shown for the GNI analysis of beams with lateral-
torsional buckling. Numerical examples show that the derived new formulae are able to capture the 
behavior predicted by shell finite element analysis. The new analytical solutions well explain the 
differences between the results of classic analytical solutions and shell finite element analyses. The new 
analytical formulae predict symmetric bifurcation for doubly-symmetric cross-section and mono-
symmetric cross-sections loaded in the symmetry plane. However, the bifurcation is asymmetric as soon 
as the cross-section is not doubly symmetric and the load is perpendicular to the plane of symmetry. This 
feature of the analytical solution is in perfect agreement with the observations from shell FE results. 
Finally, unlike the classic analytical solution, the new analytical formulae suggest that maximum load is 
different from the critical load, which is again justified by shell finite element results.  
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Abstract 
In this paper a new way to define transverse extension modes is introduced in the context of modal 
analysis of thin-walled members. The new primary transverse extension modes are inspired by the strain 
distributions of global and distortional modes. The new modes are employed here in the constrained 
finite strip method. The new modes require some change in the interpolation functions of the semi-
analytical finite strip method, which change is briefly discussed. The practical advantage of the proposed 
new transverse extension modes is that the artificial stiffness increase, which is characteristics to 
constrained analyses, can be compensated by the consideration of the relevant new transverse 
extension mode(s), as illustrated by numerous proof-of-concept examples in the paper.  
 
 
1. Introduction 
A widely used practical approach to understand and analyse the complex behaviour of a structural 
member is to decompose the complex phenomenon into simpler ones, and then to interpret the 
complex phenomenon as a superposition of simpler phenomena. In accordance with this approach, the 
deformations of thin-walled members (e.g., cold-formed steel members) are frequently categorized into 
characteristic classes as follows: global (G), distortional (D), local-plate (L), shear (S) and transverse 
extension (T) behaviour. There are two major approaches for the modal decomposition. One approach is 
the enhancement of classic beam models, followed most prominently by the generalized beam theory 
(GBT), see e.g. Bebiano et al (2015). The other approach is the constraining of shell models; the idea first 
appeared in the constrained finite strip method (cFSM), see e.g. Adany and Schafer (2008), but later 
applied in a number of other methods, too.  
 
The modal decomposition of the behaviour of a thin-walled member has been found especially useful to 
understand and analyse the stability behaviour which is governing in many practical situations due to 
the thin-walled nature, i.e., high slenderness of the structure. In buckling problems these are the G, D 
and L which are the most important ones, but shear and transverse extension deformations might have 
an important role, too. 
 
Since in the G and D modes the transverse strains are forced to be zero, while the longitudinal normal 
strains are forced to be non-zero, the longitudinal normal stiffness of the plate elements are increased 
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whenever a static analysis is performed in the G and/or D deformation spaces. The phenomenon was 
reported in various cFSM papers and fully explained in Adany (2012) by analytical considerations. 
Obviously, the increased stiffness is initiated by the restrained transverse contraction/stretching. By 
allowing transverse extension deformations, therefore, the artificial extra stiffness can be released. It 
was also shown that the extra stiffness can (typically) be avoided by defining zero Poisson’s ratio. 
 
In the here reported research new, practically meaningful transverse extension modes are presented. 
The practical advantage of the introduced new T modes is that artificial stiffness increase can be 
released from the global and/or distortional solutions by adding the corresponding T modes. For 
example, flexural buckling of a thin-walled member with truly rigid cross-sections requires one single 
mode to consider, namely one of the global bending modes. If we want to have flexural buckling while 
allowing small transverse extensions (which are typically allowed in a classic buckling solution), we need 
to add one extra mode, namely the corresponding “transverse extension bending” mode.  
 
The new T modes have been proposed similarly to the S modes. First, primary and secondary T modes 
are distinguished, the primary modes being characterized by linear transverse normal strain 
distributions for any flat part of the member. Then, the primary modes have been further subdivided 
into “transverse extension bending”, “transverse extension torsion”, “transverse extension distortional”, 
and “other transverse extension” modes. The transverse distribution of the transverse normal strains 
are identical to those of the longitudinal strains in global and distortional modes. 
 
There is a practical difficulty: the existing constrained finite strip and finite element implementations 
assume linear transverse shape functions for the in-plane translations, which means that linear variation 
of the transverse strains is not possible within one element. The most straightforward solution is to 
change the shape functions, which will briefly be presented in the paper. 
 
 
2. The new transverse extension modes 
In GBT and cFEM the G and D modes are characterized by specific warping distributions over the cross-
section. The specialty is that the distribution is linear along any flat plate. This is true not only for the 
warping (i.e. longitudinal) translations, but also for their derivatives (with respect to the longitudinal 
coordinate), that is for the longitudinal normal strains. This means that if a simple open or closed cross-
section has n main nodes (called also natural nodes), the number of independent G+D distributions is n, 
i.e., the number of G and D modes altogether equals n. (In the case of complex cross-sections the 
number of G+D modes can be smaller than n.) By further assuming that the transverse normal strains 
and the in-plane shear strains are zero, in a typical open cross-section 4 modes can be found where the 
warping distribution is piece-wise linear and the cross-section is displaced as a rigid body. These are 
usually called global (G) modes. The remaining modes are the distortional (D) ones, still with piece-wise 
linear warping. The strain distributions are illustrated in Fig. 1 for a lipped channel cross-section. 
 

 
Figure 1: Load-displacement plots, 3-DOF approach  
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The in-plane shear deformations are discussed in detail in Adany (2013), where the distinction of 
“primary” and “secondary” shear modes was introduced. Primary shear modes (SP) are characterized by 
linear distribution of the in-plane shear strain in the transverse direction in any flat part of the cross-
section, while secondary shear modes (SS) are those with nonlinear shear strain distribution even within 
one flat plate element. Since G and D and SP modes all share the piece-wise linear nature of the relevant 
strain distribution, it is possible and meaningful to categorize the primary shear modes into “shear 
bending”, “shear torsion”, “shear distortional”, and “other shear” modes. All are characterized by linear 
distribution of the (in-plane) shear strains in the transverse direction for any flat part of the cross-
section, and, furthermore, the distributions are similar to the longitudinal normal strain distributions of 
the global bending, global torsion and distortional modes, respectively. This makes it possible to easily 
imitate shear-deformable beam theories, or, to solve problems of hollow sections with twisting. It is to 
note that “shear axial” mode does not exist, since if the warping is uniform, there is no associated in-
plane shear. It is also to note that “other shear” modes exist only in branched cross-sections. The details 
can be found in Adany (2013). 
 
The idea here is to apply the approach of shear modes to the transverse extension modes (T). In the 
case of T modes the characterizing strain is the transverse normal strain. We want to have, therefore, 
“primary transverse extension” modes (TP) with piece-wise linear transverse strain distributions, 
identical to the ones illustrated in Fig. 1. Furthermore, we introduce “transverse bending” (TB), 
“transverse torsion” (TT), “transverse distortional” (TD), and “other transverse” (TO) modes, with the 
relevant strain distributions. 
 
The above description of the transverse extension modes is independent of the numerical method, and 
can potentially be applied in any modal decomposition method. Here its application in the constrained 
finite strip method (cFSM) is presented and briefly discussed.  
 

 
3. Modified FSM 
In the semi-analytical finite strip method (FSM) the members are discretized into longitudinal strips as 
shown in Fig. 2. Note, Fig. 2 illustrates the nodal displacements for the simplest longitudinal shape 
function as given in Eqs. (1)-(3), with m=1.  
 
Within a strip, local displacement fields u, v, and w are expressed by the linear combination of basis 
functions and the nodal displacements, which latter ones now should be interpreted as characteristic 
displacement values at nodal lines. In the classic FSM the displacements are interpolated as follows 
(Cheung, 1968): 
 

      (1) 

 

    (2) 

 

    (3) 
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where a is the member length, and b is the strip width. The above longitudinal shape functions 
correspond to locally and globally pinned end restraints, and in typical buckling solutions m=1 is used. It 
is to note for other end restraints (e.g. clamped-clamped) other functions are necessary. 
 

 
Figure 2: Load-displacement plots, 3-DOF approach  

 
It is to observe that the v longitudinal translations are interpolated by linear functions in the transverse 
direction. Consequently, for the global modes as well as for the primary shear modes one single element 
is enough to use for one flat plate between two main nodes. However, it can also be seen that for the u 
transverse translations the interpolation functions are linear in the transverse direction (i.e., in x). A 
consequence of this is that within one element the transverse normal strain εx=du/dx is constant. If one 
single strip is used in one flat plate, the εx distribution cannot be linear in x. But even if multiple strips 
were used within one flat plate, a linearly varying εx could not have been achieved, only approximated. 
 
A straightforward solution is to change the transverse interpolation functions for the u displacements: 
instead of linear, we need quadratic function, so that its first derivative could be linear. To do so, we 
need three nodes (or nodal lines), and the u displacements can be expressed as: 
 

    (4) 

 

This change of the interpolation has several consequences for the FSM. The number of degrees of 
freedom of a single strip is changing from 8 to 9, hence the size of the local stiffness matrix changes 
from 8×8 to 9×9, etc. Also, certain terms of the stiffness matrix change and new terms appear. The new 
stiffness matrices can be derived by following the usual steps, the details are not shown here. 
 
The change of the interpolation function has an important effect on the constraining, too. However, 
since in G, D, L and S modes the transverse extension is zero, these modes are not affected. The T modes 
are obviously affected. Most notably, the number of primary transverse extension modes increases, in 
fact roughly doubles. Also the number of secondary T modes increases significantly. The exact number 
of TP and TS modes is dependent on the topology of the cross-section, and not detailed here.   
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Figure 3: Strip with new DOF  

 
 
4. Examples 
In this Section proof-of-concept examples are presented. A lipped channel member is selected, with 
typical geometric dimensions: 200 mm web depth, 80 mm flange width and 15 mm lip length. (The lips 
are perpendicular to the flanges.) The thickness is 1.5 mm. The material is steel with 210 GPa of Young’s 
modulus and ν=0.3 Poisson’s ratio. The load is uniform compression. 
 
The cross-section is open, with 6 main nodes. Consequently, there are 6 characteristic piece-wise linear 
warping distributions (as in Fig. 1), four of them global (G), two of them distortional (D). In Figs. 4-6 the 
two pure bending buckling modes and the one pure torsion buckling mode are studied. 4 curves are 
plotted in each figure. The first one is the solution with one single mode, e.g., in Fig. 4 the pure minor-
axis buckling mode by using the GBmin deformation mode only. The second curve is calculated by the 
same one mode, but with an orthotropic material by setting the Poisson’s ratio to zero. The third curve 
is calculated with the normal isotropic material, but with adding the relevant transverse extension 
mode, too. E.g., in the case of minor-axis buckling the minor-axis bending transverse extension mode 
(i.e. TBmin) is added with a strain distribution similar to that of GBmin. Finally, the fourth curve is the 
ordinary signature curve of the cross-section, calculated by regular FSM without any constraints. It can 
be observed that the introduced T mode reduces the critical load values, practically the same way as the 
zero Poisson’s ratio. For the actual material the reduction is 9%, which comes from the 1/(1-ν2) 
expression. The critical load values nicely coincide with the classic analytical solutions.  
 

 
Figure 4: Comparison of various options: minor-axis global mode  
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Figure 5: Comparison of various options: major-axis global mode  

  

 
Figure 6: Comparison of various options: global (pure) torsional mode  

  

 
Since the first real buckling mode of the actual channel member (if long enough) is flexural-torsional 
buckling, the pure buckling modes (especially the pure flexural modes) are well above the signature 
curve. In Fig. 7 the flexural-torsional buckling solutions are presented. Essentially the same 4 options are 
used. However, since flexural-torsional buckling is consisted of major-axis bending mode (GBmaj) and 
global torsional mode (GT), pure flexural-torsional buckling requires two deformation modes: GBmaj 
and GT. Consequently, when transverse extension modes are added (in the third curve), the 
corresponding two transverse extension modes are to be added: TBmaj and TT. The numerical values 
prove again that the consideration of the appropriate new transverse extension modes introduces the 
necessary additional flexibility to have critical values practically identical to those from classic analytical 
solutions. For the actual member the critical values are very close to the signature curve, too, at least for 
large member lengths.  
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Figure 7: Comparison of various options: flexural-torsional mode  

  

In Figs. 8 and 9 the pure distortional buckling results are presented: symmetric and point-symmetric 
modes, respectively. The figures follow the logic of the previous figures, solutions are given in 4 options. 
The difference between the 1st and 2nd option is again 9 %, just in the case of global buckling. However, 
consideration of the relevant T mode (third curve) does not lead to the critical values identical to those 
from the 2nd option. Consideration of the relevant T mode does mean some extra flexibility, hence the 
critical load values are smaller than those in the 1st option, but the difference between the 3rd and 1st 
options is length-dependent: for larger lengths the difference is negligible, and the difference is getting 
larger as the length decreases. In the actual example this difference at the distortional minimum is 
approx. 4%. We believe that the total elimination of the Poisson’s ratio is not a proper solution for 
distortional buckling, since distortional modes involve transverse bending of the plate elements, where 
the Poisson effect is reasonable to consider, hence simply setting the Poisson’s ratio to zero introduces 
too much flexibility to the member. On the contrary, the consideration of the relevant transverse 
extension mode seems to introduce the proper amount of additional flexibility.  
 

 
Figure 8: Comparison of various options: symmetric distortional mode  
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Figure 9: Comparison of various options: point-symmetric distortional mode  

  

 
4. Conclusions 
In this paper new transverse extension modes are introduced, applicable in the modal analysis of thin-
walled members. The new modes are inspired by the strain distributions of global and distortional 
modes, of which the strain distributions have earlier been applied to define meaningful primary shear 
modes. In this paper the new modes were applied in the context of constrained finite strip analysis. The 
new modes require the modification of the interpolation of the transverse translational displacements, 
which slightly modifies the classic semi-analytical finite strip method, e.g., by modifying the size and the 
terms of the stiffness matrices. The practical advantage of the proposed new transverse extension 
modes is that the artificial stiffness increase, which is characteristic of constrained analyses, can be 
compensated by the consideration of the relevant new transverse extension mode(s). For example, to 
have a flexural buckling solution practically identical to the one predicted by the Euler formula, one 
global bending deformation mode plus the relevant (one single) transverse extension mode should be 
considered in a constrained finite strip analysis. The applicability of the new transverse extension modes 
were illustrated by numerous proof-of-concept examples. 
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Abstract 
The paper presents the results of a numerical parametric study into the influence of relatively large load 
eccentricities with respect to minor and major axis upon buckling strength and buckling modes of thin-
walled cold-formed steel lipped channel section columns subjected to eccentric compression. The study 
was performed using Finite Element Method (code Ansys) and Finite Strip Method (code CUFSM). 
Selected theoretical results were compared with experimental test results. Some conclusions concerning 
sensitivity of buckling strength and redundancy of load-carrying capacity in the post-buckling (either 
elastic-plastic or plastic) range to the magnitude of eccentricity, depending on the eccentricity position 
(minor/major axis) and column dimensions are derived.  
 
1. Introduction - State of art review 
Thin-walled cold-formed steel (TWCFS) sections commonly have mono-symmetric or point symmetric 
shapes, and normally have stiffening lips on flanges and/or intermediate stiffeners in wide flanges and 
webs. Both simple and complex shapes can be formed for structural and non-structural applications. 
Cold-formed steel design is dominated by some main problems (EN1993-1-1:2005, EN 1993-1-3:2006), 
i.e. stability behavior, which is dominant for design criteria of cold-formed steel sections, and connecting 
technology (Rhodes 1997, EN 1993-1-3:2006), which is specific and strongly influences the structural 
behavior and design detailing. In the last years, the seismic performance of cold-formed steel structures 
started to be examined. The problem of buckling loads and the load carrying capacity of TWCFS 
members subjected to simple loading systems (pure bending or uniform compression) has been with 
satisfactory accuracy solved within the theory of thin-walled structures, as well as in design code 
specifications. EN 1993-1-3 (2006) gives accurate predictions of the buckling load and ultimate strength 
of TWCFS members under concentric axial compression but is less accurate in the examination of 
eccentrically compressed columns. Thus, the problem concerning members subjected to combined 
loadings (compression and bending, eccentric compression) is still an open question.  
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There are relatively few reported results of both theoretical and experimental research into structural 
behavior of thin-walled columns under eccentric compression. The very first investigation results 
concerning channel section members under eccentric compression were reported by Rhodes and Harvey 
(1977). In 2000, Rhodes et al. have presented results of research into buckling strength of stainless steel 
TWCF lipped channel sections under concentric and eccentric compression (with respect to minor axis). 
Results of experiments were compared with AISI and EUROCODE recommendations. The comparison 
showed good agreement for concentric loading and less accurate for eccentric one. 
 
Miller and Pekoz (1994) investigated the effect of load eccentricity in TWCFS long lipped channel 
sections with perforated and non-perforated webs. Sections were subject to eccentric load both with 
respect to minor and major axis. The experimental results were compared with AISI buckling strength 
predictions for combined load (compression and bending). Mulligan and Pekoz (1984) proposed 
relations of effective width of lipped channel section members under eccentric load with respect to 
minor axis. They compared ultimate load predictions obtained on this basis with experimental results 
and code recommendations.  
 
More recently, Wysmulski et al. (2017) investigated channel section columns made of multiply laminate, 
loaded with very small eccentricities, which were rather small deviations from axial direction. They 
stated that the eccentricity of the applied load influences significantly buckling load, even for small 
eccentricities. 
 
Zhao et al. (2016a) performed experimental investigations into 29 extruded columns with box-type and 
L-type sections made of aluminum alloy, to study the stability behavior of these columns when 
subjected to eccentric loads. Using FE models, an extensive parametric study was performed to 
investigate the effects of section dimensions, slenderness ratio, and eccentricity on the stability bearing 
capacity of the eccentrically loaded columns. The test and parametric study results were compared to 
the design capacity predictions in the existing design codes. It was found that the predicted stability 
bearing capacities in the two design codes was generally conservative for the eccentrically loaded 
columns. 
 
Zhao et al. (2016b) presented an experimental program employed on four CHS sizes made of austenitic 
stainless steel subjected to combined load (compression and bending), particularly for a wide range of 
loading eccentricities, followed by a numerical modelling program and including parametric studies. 
Improved design rules were also sought through extension of the deformation-based continuous 
strength method (CSM) to the case of stainless steel CHS under combined loading. 
 
Liang et al. (2019) investigated the local cross-section behavior of stainless steel channel sections under 
the combined axial compression and minor axis bending moment. They performed experiments 
together with FE simulations. They carried out a parametric study for a wider range of cross-section 
aspect ratios and slenderness, loading combinations and bending orientations. They also compared the 
obtained results with standard predictions and proposed modifications of those predictions. 
 
Zhang et al. (2021) studied buckling behavior of press-braked stainless steel channel section beam-
columns under combined compression and minor-axis bending. They carried out experiments and FE 
simulations. The FE simulations were performed for different cross-section dimensions, member 
effective lengths and loading combinations. Both experimental and numerical results were compared 
with standard design rules. They stated not entirely satisfactory consistency of standards predictions 
and obtained results. 

https://www.sciencedirect.com/topics/engineering/axial-compression
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Liang et al. (2020) presented experimental and numerical FE investigation results into the behavior of 
laser-welded stainless steel channel sections under combined compression and bending moment about 
the major axis. They proposed an improved design approach through extension of the deformation-
based continuous strength method (CSM) to the case of laser-welded stainless steel channel sections 
under combined compression and major axis bending. 
 
The above literature review shows that the problem concerning members subjected to combined 
loadings (compression and bending, eccentric compression) is still an open question. Particularly, design 
rules (European, American and others) have to be improved and new proposals of standard predictions 
have to be elaborated. 
 
There are two aspects, which make the theoretical investigations of the analyzed problem (both 
analytical and numerical) complex. Short members buckle in local-global interactive mode and buckling 
is of plastic-elastic type. Secondly, due to the interaction of axial load and bending (caused by the 
eccentricity) the problem is structurally non-linear. These aspects are discussed in the paper. 
 
2. Subjects of investigation 
The objective of the present work is a study on the buckling behavior of TWCFS lipped channel section 
columns subjected to eccentric compression about the minor (ey) and major (ez) axis. The subject of the 
study is shown in Fig.1. The typology of analyzed columns is shown in Table 1. Dimensions of columns to 
be under investigation were determined in order to classify the members in class 4 (EN 1993-1-1:2005). 
It means that local buckling will occur before the attainment of yield stress in one or more parts of the 
cross-section. 
 

 
Fig. 1.: Lipped channel section – indication of eccentricities 

 
Table 1: Typology of columns 

No. a (mm) b (mm) c (mm) t (mm) l (mm) 

1 150 60 20 2 450
 

2 150 60 20 1 450 

3 150 47 16 2 450 

4 150 47 16 1.5 450 

5 150 47 16 1 450 

6 250 100 25 3 600 

7 250 100 25 2.5 600 

8 250 100 25 2 600 

9 250 100 25 1.5 600 

Internal radii r = 1.5 mm (for t = 1 mm) and r = 2.5 mm 
(for t = 2, 2.5 mm) 
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Consequently, for Class 4 cross-sections effective widths may be used to make the necessary allowances 
for reductions in resistance due to the effects of local buckling. Since these sections are prematurely 
prone to local or distortional buckling and they do not have a real post-elastic capacity, a failure of such 
members is initialized by the local-global interactive buckling of plastic-elastic type, not an elastic-elastic 
one. 
 
3. Methodology of the buckling analysis 
Buckling loads of members under investigation were determined using Finite Element (FE) and Finite 
Strip (FS) methods. FE calculations were carried out using the commercial FE ABAQUS codes v. 6.14 
(Dassault Systemes 2014) and Ansys 18.2 software (Ansys 2018). To create adequate discrete models of 
considered structures, 4-node 181-shell element was assumed. The size of finite element amounted to 2 
mm. The nonlinear analysis was conducted for large strains and deflections on the basis of Green-
Lagrangian equations. The number of sub-steps for the single calculation was assumed to be from 400 
up to 50,000. The maximum number of iterations for each sub-step was set up to 5000. The full material 
characteristic of one-directional tensile test expressed as truth stress-logarithmic strain was 
implemented to software. Nonlinear estimations and convergence analysis were conducted by using the 
Newton-Raphson algorithm. FS calculations were performed using CUFSM code (Li and Schafer 2010). 
Buckling loads were calculated for pin-joined columns in the elastic range (linear eigenvalue problem).  
 
4. Results of the analysis 
4.1 Eccentric compression with respect to minor axis 
The analysis carried out using CUFSM code (Li and Schafer 2010) based on Finite Strip Method as well as 
FE analysis (code ANSYS) showed, that for nearly all positive eccentricities a typical distortional buckling 
takes place. For the smallest negative eccentricities (e = -5 mm) a local-distortional buckling mode was 
observed. For larger negative eccentricities, the local buckling of the web takes place (Fig. 2).  
 

     
Fig. 2: Buckling modes for eccentric loads (minor axis) - results of CUFSM analysis; model No 1 (Table 1) 

 

Fig. 3 shows diagrams of normalized buckling loads in terms of normalized eccentricity with respect to 
position of the centroid (3b) and eccentricity (3a). Fig. 3a shows loads normalized with respect to 
buckling load in concentric compression (purely axial), while Fig 3b – with respect to fully plastic 
compressive load for gross section A. Buckling loads diminish significantly with the increasing absolute 
value of the eccentricity, however a distinctive maximum is observed for about 0.6 yC (position of the 
centroid of gross cross-section – Fig. 3a). It is caused by the “migration” of the centroid of the effective 
cross-section (effective centroid). This phenomenon was also reported by other researchers (Miller, 
Pekoz 1994). Fig. 4 presents buckling loads (red points) and ultimate loads in terms of the eccentricity. 
Ultimate loads are obtained both from FE non-linear analysis (Abaqus) and experiment (Dubina et al 

ez=30 mm 

ez=-60 mm 
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2020). Also, ultimate loads display a distinctive maximum. It can be noticed, that buckling loads for 
positive eccentricities obtained using FS analysis and FE eigenvalue linear analysis exceed ultimate loads, 
determined both by non-linear FE simulation and experiment (despite buckling stresses do not exceed 
yield stress). The same was reported by Kotełko et al. (2018). These results indicate, that even in the 
elastic range linear eigenvalue analysis is not adequate, because of structural non-linearity of the 
problem. The analysis should take into account load-deflection history using an incremental, iterative 
procedure (Miller, Pekoz 1994).  

 

 
 
 

a)                                                                                      b) 

       
Fig. 3: Buckling modes (eccentricity with respect to minor axis) – results of CUFSM analysis (σY = 355 MPa) 

 

 
Fig. 4: Buckling and ultimate loads for columns no. 1 (Table 1) - (σY = 355 MPa); red dots – buckling loads (CUFSM) 

e/y
c
 

250 x 100 x 25, t = 2.0, 2.5, 3.0 150 x 60 x 20, t = 1.0, 2.0 

150 x 47 x 16, t = 1.0, 1.5, 2.0 
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4.2 Eccentric compression with respect to major axis 
In the case of eccentricities with respect to major axis local buckling modes were observed only (Fig. 5). 
Both buckling loads (CUFSM and Ansys analysis) and ultimate loads (Ansys non-linear analysis) in terms 
of the eccentricity are shown in Fig. 6 for columns No. 1 and No. 2 (Table 1). In the contrary to the 
eccentricity with respect to the minor axis, a pure symmetry takes place for negative and positive 
eccentricities, which was predicted. Also, as predicted, maximum buckling load is obtained for 
concentric load. Ultimate loads significantly decrease with an increase of the eccentricity. However, in 
the contrary to eccentricities with respect to the minor axis, buckling loads are much less sensitive to 
the eccentricity of applied load. Also in that case, buckling loads obtained from the linear analysis (both 
FS and FE) exceed ultimate loads determined from FE non-linear analysis, however for columns 
indicated as model 1 (No. 1 in Table 1) buckling stress exceeds the yield stress.  
 

                     
                        a)                                                                 (b) 

Fig. 5: Buckling modes (major axis): a) ey = 35 mm, b) ey = 110 mm (model No. 2 – Table 1) 
 

 
Fig. 6: Buckling and ultimate loads versus ey for columns No. 1 and No. 2 (Table 1) – σY = 200 MPa 

 
Fig. 7 presents buckling loads (obtained from the linear eigenvalue FS and FE analysis) versus the 
eccentricity ey (major axis) for the whole typology of columns specified in Table 1. Dotted lines indicate 
results, which exceed yield stress. For the whole typology, the decrease in buckling load due to the 
eccentricity is not as significant, as for the case of the eccentricity with respect to minor axis.  
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Fig. 7: Buckling loads versus ey  

 

5. Final remarks 
The paper presents the results of a numerical analysis of buckling strength of columns subject to 
eccentric compression, based on eigenvalue, linear solutions (FS and FE). The results show that these 
solutions are not entirely adequate, because of structural non-linearity of the problem. Those numerical 
solutions are particularly useful to recognize buckling modes. A more precise analytical method of 
buckling and ultimate strength prediction should take into account load-deformation history and load-
stress history and should be performed using incremental iterative algorithms.  
 
The redundancy of the load-carrying capacity in comparison with buckling loads is relatively large for 
both examined cases (eccentricity with respect to minor/major axis). “Migration” of the effective cross-
section centroid, taking place for columns under eccentric compression with respect to minor axis, 
should be taken into account in the buckling strength estimations, also in standard predictions.  
 
The presented work is a part of larger research program, within which further research will be continued 
into derivation of analytical incremental procedures, as mentioned above. 
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Alternative complementary shear and transversal elongation modes in
Generalized Beam Theory (GBT) for thin‐walled circular cross‐sections

M.J.Bianco*, A.K.Habtemariam†, C.Könke‡, F.Tartaglione§, V.Zabel¶

abstract

This paper presents alternative complementary shear and transversal elongation modes of Gen‐
eralized Beam Theory (GBT) for thin‐walled hollow circular cross‐sections and compares them to the
recent developments concerning membrane’s shear and transversal elongation. The main features of
the alternative complementary modes are: i) despite of Poisson’s effect, each complementary mode is
related to a clear membrane’s behavior: transversal elongation and shear deformation; ii) The coupling
between these complementary modes is minimized, as well as the coupling between theses modes
and the respective original GBT’s mode; iii) the remained coupling effect is limited to plate’s behavior.
To illustrate the present alternative, complementary modes and its limitations, the detailed examples
applied in a short and deep pipe are carried out and their final results are compared with a full shell
element model.

1. INTRODUCTION

GBT, Generalized Beam Theory, is a structural mechanics theory that involves 2D features of shell
theory condensed into 1D beam theory. Originaly, its creator, Richard Schardt (Schardt 1989), devel‐
oped it as an extension of Vlasov beam theory (Vlasov 1961): a set of amplification functions, which
represent the magnitude of predefined shapes of cross‐section’s warping. Moreover, Schardt proved
that high order cross‐section’s warping shapes are combined to transversal bending cross‐section dis‐
tortion. Furthermore, GBT canbenot only extended to geometrically non‐linear analysis (Schardt 1994a,
Schardt 1994b, Davies 1994), but also to physically non‐linear analysis (Abambres 2013, Abambres
2014a, Abambres 2014b).

Based on Fourier‐Series and superposition of orthogonal modes, GBT can handle the analysis of hol‐
low circular cross‐sections (Schardt 1989, Silvestre 2007), especially concerning the effects of warping
and ovalization. Furthermore, following the concept of separation of variables, GBT uses amplification
functions to represent the magnitude of each orthogonal mode in the beam’s longitudinal direction. As
a result, this theory presents the numerical performance of beam element analysis together with the
result’s quality of shell element analysis.

Besides these attractive properties, original GBT has its limitations. Among them, one can high‐
light the neglect of shear and transversal elongation energies of membrane’s behavior. Although Be‐
biano and Gonçalves (Bebiano 2014) Silvestre (Silvestre 2003, Silvestre 2012) and Miranda (Miranda &
Ubertini 2013) developedwell‐defined solution for segmented cross‐sections, thin‐walled circular cross‐
sections are still under development,with a recent and remarkable approach proposed byNedelcu et.al,
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(Muresan, Nedelcu, & Gonçalves 2019). In this work, Nedelcu creates two complementary modes for
each original GBT mode, based on the possible displacements related to shear membrane strain. Such
complementary modes lead to a substantial coupling among these and original GBT modes due to the
membrane deformation energy.

As an alternative, the presented study proposes two other complementary modes: the first related
to membrane shear strains; and the second to transversal elongation strains due to membrane’s behav‐
ior. Consequently, the coupling among these alternatives and the original GBT’s modes are limited to
the plate’s deformation energy.

2. Original GBT analysis of hollow circular cross‐section

2.1. GBT’s assumption for the displacement field

The displacement field in GBT has two major ideas: i) the superposition of orthogonal modal cross‐
section displacement/deformation functions for the longitudinal/axial u (θ), tangential v (θ) and radial
w (θ) directions (as illustrated in figure 1.a); ii) an amplification function V (x) of these displacement
functions along the beam length. Thus, the displacement field in original GBT analysis (without mem‐
brane’s shear and transversal elongation deformation energies) in the middle‐line of hollow circular
cross‐section is expressed by:

u (x, θ) =

n∑
i=1

iu (θ) iV ′ (x) (1)

v (x, θ) =
n∑

i=1

iv (θ) iV (x) (2)

w (x, θ) =
n∑

i=1

iw (θ) iV (x) (3)

s,v

t,w
x,u

θ
r

y

z

x

Figure 1: Coordinate systems adopted in GBT’s analysis of thin‐
walled circular hollow section

Here, the upper‐left index i indicates GBT’s deformation mode. It is important to note that the first
derivative, V ′(x), in eq. 1 is not arbitrary, but it is necessary to enable the assumption of membrane
non‐shear energy deformation, which is related to the longitudinal displacement in the cross‐section,
u (x, θ), with the transversal displacements: v (x, θ) and w (x, θ). Thus, one has a clear understanding
of the functionality of each cross‐section functions: i) u (θ) leads to warping; ii) v (θ) and w (θ) lead to
cross‐section distortion (ovalization).

2.2. Hollow circular cross‐section’s analysis

One of the major characteristics of GBT is the cross‐section analysis, which is only related to ge‐
ometry and mechanical properties of the cross‐section. Such analysis leads to n natural numbers of
orthogonal mode shapes of deformation, which i) the lower modes, i.e. i = 1,2 and 3, represent the
longitudinal elongation, the major and minor bending directions; ii) the higher modes i > 3 involve
cross‐section distortions and ovalizations. Furthermore, in hollow circular cross‐sections, two additional
modes are introduced (Silvestre 2007): the pure axial extension mode i = a and the pure Saint‐Venant
torsion mode i = t.

For a non‐circular cross‐section, the analysis starts in assembling stiffness matrices related to longi‐
tudinal, transversal and shear strains. This assembly step has a non‐trivial setup (Jönsson & Andreassen
2011, Jönsson & Andreassen 2012b, Jönsson & Andreassen 2012a, Bebiano 2015), which leads to a
generic eigenvalue problem in lower modes and a quadratic eigenvalue problem for GBT’s high defor‐
mation modes (Jönsson & Andreassen 2012b). Fortunately, in circular hollow sections, this laborious
step is replaced by orthogonal deformation shapes based on Fourier series (Schardt 1989) (Silvestre
2007). In figure 2, some of these deformation shapes are presented, with their respective values given
by:

‐ For pure axial extension mode, i = a: au (θ) = 0 av (θ) = 0 aw (θ) = 1 (4)
‐ For pure torsion mode, i = t: tu (θ) = 0 tv (θ) = 1 tw (θ) = 0 (5)
‐ For pure longitudinal extension mode, i = 1: 1u (θ) = 1 1v (θ) = 0 1w (θ) = 0 (6)
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Figure 2: Longitudinal and transverse deformation shape modes of a circular hollow section according to GBT.

‐ For odd modes, i = 3,5,7,... with m = (i‐1)/2


iu (θ) = −r cos (mθ)
iv (θ) = −m sin (mθ)
iw (θ) =m2 cos (mθ)

(7)

‐ For even modes, i = 2,4,6,... with m = i/2


iu (θ) = r sin (mθ)
iv (θ) = −m cos (mθ)
iw (θ) = −m2 sin (mθ)

(8)

where r is the middle‐line radius.
From these functions of the orthogonalmodes, one obtains the generalized cross‐section properties

based on each modal strain. For instance, the longitudinal strain given by:

ϵx (x, θ, t) = [u (θ)− tw (θ)]V ′′ (x) (9)

leads to the generalized warping inertia iC, with themembrane iCM and the plate iCP contributions:

iC= iCM+iCP=

∮ (
tr3 iu (θ)2+

t3r iw (θ)2

12

)
dθ (10)

where t is the thickness of the cross‐section’s wall.
The transversal elongation strain is given by:

ϵθ (x, θ, t) =
v̇ (x, θ) +w (x, θ)

r
− t

w (x, θ) + ẅ (x, θ)

r2
(11)

where the dot index represents the derivative d/dθ. Since the first term in the above expression rep‐
resents transversal elongation’s membrane strain, the original GBT approach neglects this term. There‐
fore, one reaches the following restrain condition:

w (θ) = −v̇ (θ) (12)

And the second term in eq. 11 leads to the generalized distortion stiffness:

iB =
t3

12r2

∮ (
iw (θ) + iẅ (θ)

)2 dθ (13)

Concerning the shear strain, the first term in the expression:

γxθ (x, θ, t) =
u̇ (x, θ) + rv′ (x, θ)

r
− t

u̇ (x, θ)− rv′ (x, θ) + 2rẇ′ (x, θ)

r2
(14)

is vanished in original GBT analysis. Therefore, one reaches the following restrain:

v (θ) = − u̇ (θ)

r
(15)



The second term in eq. 14 leads to the inertia concerning the cross‐sectional shear, iD, in eq. 16. Also,
the coupling of this second term together with the second term in eq. 11 provides the Poisson effect
stiffness, iDµ, as presented in eq. 17

iD =
r

3
t3
∮ ( iẇ (θ)− iv (θ)

r

)2

dθ (16) iDµ = r

∮ iw (θ) + iẅ (θ)

r2
w (θ)dθ (17)

Evaluating the closed line integral in equations 10, 13, 16 and 17, one obtains the practical expres‐
sions:

iC =



0 for i = t
πrt3

6 for i = a

2πrt for i = 1

πtr3
(
1+

t2m2(m2+2)
12r2

)
for i > 1

(18)
iD =

{
π t3

3rm
2
(
m2−1

)
for i > 1

0 for all other cases
(19)

iDµ =

{
π
rm

4
(
1−m2

)
for i > 1

0 for all other cases
(20)

iB =


0 for i = t and i = 1

2πt/r for i = a

πt3
m4(m2−1)

2

12r3
for i > 1

(21)

2.3. GBT’s external force decomposition and orthogonal ordinary differential equation

From all infinite possible modes of GBT, only a few are required to evaluate a problem. Since GBT
presents the external deformation energy also asmodal superposition, themodal decomposition of the
external loads filter the relevant modes. Similar to the internal strain energy, the separation of variables
can represent the external general loads functions:

px (x,θ)=fx(x) qx(θ) (22) pv (x,θ)=fv(x) qv(θ) (23) pw (x, θ) = fw (x) qw (θ) (24)

The inner product between the deformationmodes (equations 7‐ 8) and the functions qx (θ), qv (θ)
and qw (θ) provides the modal decomposition:

iqx=−r

∮
qx (θ)

iu(θ)dθ (25) iqv=r

∮
qv(θ)

iv(θ)dθ (26) iqw=r

∮
qw(θ)

iw(θ)dθ (27)

Thus, from the Hamilton’s principle, one can reach the GBT’s ordinary differential equation:

EiC

1−µ2
iV ′′′′(x)−

(
GiD−Eµt3iDµ

6(1−µ2)

)
iV ′′(x)+

EiB

1−µ2
iV (x) = fx (x)

iqx(x)+fv (x)
iqv(x)+fw (x) iqw(x) (28)

Here,E and µ are Young’s modulus and Poisson’s ratio, respectively and the modal amplification func‐
tion iV (x) acts as a generalized beam problem.

3. Complementary Modes for hollow circular cross‐section

3.1. Shear and Shear‐Transversal Complementary Modes for Membrane Energies

The focus of the complementarymodes proposedbyNedelcu et al. (Muresan,Nedelcu,&Gonçalves
2019) is the shear strains energy, which has two major sources: the longitudinal and the transversal
elongation displacement. Thus, each complementary mode concerns a displacement direction u or v.
Namely, as shear u and shear v modes, that have the following definitions:

uu (θ) = ku (θ) (29) vv (θ) = kv (θ) (30) uv (θ) = uw (θ) = vu (θ) = vw (θ) = 0 (31)

The lower‐left indexes k, u and v indicate the modes of original GBT, complementary shear u and
v, respectively. In these definitions, the complementary mode shear u has membrane’s strain energy
not only related to shear but also related to longitudinal elongation. Thus, this mode type presents a
strong coupling with the original GBT’s mode. Meanwhile, the complementary mode shear v has no
coupling with the original GBT’s mode due to the membrane’s behavior. However, this mode presents a
strong coupling with the complementary mode shear u. Table 1 summarises the generalized geometry
properties of these complementary modes, as well as the coupling among them and the original GBT
modes, with the simplification of non‐Poisson’s ratio.



Table 1: Summary of generalized inertia of each complementary mode (Nedelcu et al.) and their coupling terms
with the simplification of non‐Poisson’s ratio

Inertia
compl.

mode u

compl.

mode v

coupl.

mode k‐u

coupl.

mode k‐v

coupl.

mode u‐v

C πtr3 0 πtr3 0 0

D πtrm2 πm2t
(
r+ t2

12r

)
0 πt3m2

12r

(
1− 2m2

)
−πm2rt

B 0 πm4t
r

(
1 + t2

r2

)
0 πt3m4

12r3

(
1−m2

)
0

3.2. Alternative Complementary Modes for decoupled Shear and Transversal Membrane Energies

In original GBT analysis, deformation modes involve all possible strain energy from plate behav‐
ior (longitudinal, transversal and shear strains) and only longitudinal strain energy due to membrane
behavior. Inspired by this feature, the alternative complementary modes present strain energy defor‐
mation for the full plate’s behaviour. Moreover, each of these alternative modes is related to a specific
membrane strain: the first one to shear strains; the second one to transversal elongation strains. Con‐
sequently, the couplings in the linear analysis among the original and the complementary deformation
modes are limited to: i) plate’s behavior, involving terms of the order t3; ii) Poisson’s ratio between the
original and the complementary modes related to transversal strain elongation.

The above assumptions require no membrane longitudinal strain energy for either of the comple‐
mentary modes. Thus, from eq. 9 one obtains the condition of non‐longitudinal middle‐line displace‐
ment:

γu (θ) = θu (θ) = 0 (32)

The lower‐left indexes γ and θ indicate the terms related to shear and transversal elongation, respec‐
tively.

For the transversal displacements θv (θ), θw (θ), γv (θ) and γw (θ), each complementary mode
leads to different definitons. In the case of the complementary mode of shear strain, γ, it requires
the same constrain related to transversal elongation presented in eq. 12. Thereby, the transversal dis‐
placement definition of this complementary mode is the same of the original GBT modes:

γv (θ) = kv (θ) (33) γw (θ) = kw (θ) (34)
The alternative mode of transversal elongation strain, θ, requires no shear strain energy, which

leads to the constraint of non‐tangential displacement. Thus, this complementary mode has only w (θ)
components that are the same as the original GBT modes:

θv (θ) = 0 (35) θw (θ) = kw (θ) (36)

Thus, the application of Hamilton’s principle uses the strains expressions, equations 11 and 14,
based on these displacements definitions. As a result, one achieves the generalized cross‐section for
the alternative complementary modes, summarized by Table. 2:

Table 2: Summary of generalized inertia of each alternative mode and their coupling terms.

In
er
tia compl.

mode γ

compl.

mode θ

coupl.

modes k‐γ

coupl.

modes k‐θ

coupl.

modes γ − θ

C πt3rm4

12 πt3rm4

12 πt3r
m2(m2+1)

12 πt3r
m2(m2+1)

12 πt3rm4

12

D πtrm2

(
1+

(3−8m2+4m4)t2

12r2

)
πt3m6

3r πt3
m2(m2−1)

2

3r πt3
m4(m2−1)

3r πt3
m4(m2−1)

3r

B πt3
m4(m2−1)

2

12r3 πtm
4

r

(
1+

(m4−1)t2

12r2

)
πt3

m4(m2−1)
2

12r3 πt3
m6(m2−1)

12r3 πt3
m6(m2−1)

12r3

Concerning the external load of the alternative complementary modes, there is no longitudinal
terms, γqx (θ) = θqx (θ) = 0, and the transversal terms are the same of respective GBT’s original modes:

γqv (θ) = kqv (θ) (37) θqv (θ) = 0 (38) γqw (θ) = θqw (θ) = kqw (θ) (39)



4. NUMERICAL EXAMPLES

The numerical examples use the same thin‐walled circular hollow steel cross‐section with different
boundary conditions. The first example has no boundary conditions in any node, i.e, the thin‐walled cir‐
cular hollow cross‐section is allowed to deform freely under the load conditions. The second example
has at the initial node constrains for all displacements and rotations, in all directions. Both structures
represent a segment of 1m of a buried pipeline, as shown in figure 3, under a downward and upward
linear projected surface load that represents the earth pressure. I.e., the total load applied on the struc‐
ture is not a product of the surface load and the area of the surface, but it is the product of the surface
load and the projected area on the global coordinate direction z. The material parameters are Young’s
modulus E = 205,000N/mm2, Poisson’s ratio µ = 0.3, and shear modulusG = 78,846.2N/mm2.

co
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dθ
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Figure 3: Buried pipeline segment under downward and upward pressure: a) and b) boundary conditions in Ex‐
ample 1 and 2, respectively; c) layout configuration; d)pressure load in polar coordinates.

4.1. Setup of finite element and GBT Analysis

The projected pressure in figure 3.b leads to the following expressions: qv = q cos (θ) sin (θ) and
qw =−q cos2 (θ), which has in theGBTmodal decomposition only participation inmode a and 5. Hence,
one obtains: aqv = 0, aqw = −50π, 5qv = −12.5π and 5qw = −6.25π (in N/mm). After the filtering of
GBT modes, one needs to solve a linear differential equation system. To achieve this system’s solution,
one uses the finite element based on the exact solution (Bianco 2018) of the GBT’s differential equation,
eq. 28. It is essential to observe that the coupling among the original and the complementary modes
of GBT does not share the same solution of a single‐mode. Therefore, the coupling system requires an
element discretization of the structure, which uses five elements in these examples. From this finite
element assembly, one obtains the modal amplification functions shown in figure 4 and table 3:

Example 1
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Figure 4: Model amplification functions V (x) for examples 1 and 2, respectively



Table 3: Displacement field: nodal results of the amplification functions at the center and tip points.
Ex
am

pl
e

Fu
nc
tio

n Middle Node Tip Node

mode a mode 5 mode γ5 mode θ5 mode a mode k mode γ5 mode θ5

1 V (x) −6.10E−4 −1.94E−2 −7,43E−1 1.52E−4 −6.10E−4 −1.94E−2 −7,43E−1 1.52E−4

2
V (x) −3.70E−4 −2.55E−3 −2.65E−3 −1.49E−4 −6.1E−4 −7.20E−3 −3.55E−3 −1,45E−4

V ′(x) −7.60E−6 −8.40E−5 −3.60E−5 6.06E−7 −2.85E−7 −9.59E−5 −2,17E−7 −1,21E−6

In Example 1, all derivatives are null, due to the constant geometry, loading and boundary condi‐
tions.

From these displacement fields, one can achieve the membrane forces of shear, Nγ , and the
transversal force,Nθ, based on the following expressions:

Nθ (x, θ)=
Et

r

(
aV (x)+

n∑
i=2

i
θw (θ) iθV (x)

)
(40) Nγ (x, θ)=Gt

(
tV ′ (x)+

n∑
i=2

i
γv (θ)

i
γV

′ (x)

)
(41)

The applications of eq. 40 at the tip point in example 1 and eq. 40 at the middle longitudinal point
in example 2 lead to the diagrams Fig. 5.a and Fig. 5.b‐.c, respectively. Also, these figures present the
results of the control models, which use a full shell element model developed in commercial software
pack ANSYS®. Thesemodels use four nodes shell elements based on Reissner‐Middle Theory (Shell‐181),
with a transversal discretization of 100 nodes for 25 elements segments in the longitudinal direction.
Thus, each model has 15,600 degrees‐of‐freedom.

Example 2Example 1

Nθmax=0 kN/cm
Nxθmin=‐0.50 kN/cm

shell 181 GBT

Nθmax=0.024kN/cm
Nθmin=‐0.451 kN/cm Nxθmin=‐0.738 kN/cm

Nxθmax=0.738kN/cm

Figure 5: Comparison of results between GBT with the full shell model: a) and b) transversal membrane forces,
Nθ, at the tip node in Examples 1 and 2, respectively; c)shear membrane forces, Nxθ, at the middle node in
Example 2

Table. 4 presents the Mean Differences and Standard Deviation of the internal membrane forces in
Fig. 5:

5. CONCLUSIONS

This study presents an alternative extension in GBT to include the shear and transversal elongation
energies of membrane behavior. Based on two additional mode shapes, each one exclusively related
to a particular membrane’s energy. These alternative extensions in GBT have a minimal coupling effect,
related to the plate’s deformation energy. Such property is relevant for thin‐walled structures since the
plate’s coupling terms are proportional to the thickness in the power of three. Thus, these alternative
modes limited the coupling effect, due to the membrane’s deformation energy, only in non‐linear anal‐
ysis. The numerical examples show an almost exact agreement between the full shell element model



Table 4: Mean differences and standard deviation between the alternative GBT modes and the full shell element
model.

Example 1 Example 2

Nθ Nθ Nxθ

Mean Diffirence 0.032% ‐0.739% 0.155%

Standard Deviation 0.029% ‐3.123% 0.001%

and the proposed GBT model.
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Abstract 
The subject of this work are cold formed, thin-walled non-standard channel columns with stiffened 
flanges and modified webs. The recent developments in cold forming allow the production of 
increasingly modified column cross-section shapes. Buckling forces and column buckling modes were 
determined and loaded with compressive force. Experimental tests were carried out using optical 
methods (ATOS system). The research includes the description and solution of the problem of column 
stability and the influence of the cross-sectional shape change on the obtained load values. Modified 
column cross-sections show higher resistance to loss of stability compared to classical channel cross-
sections.  
 
1. Introduction 
The cold-formed thin-walled channel beams/columns with non-standard cross sections are the subject 
of researches (Fig. 1). The columns are thin-walled members made of cold-rolled steel sheets. Thin-
walled, cold-formed structural members such as beams and columns are popular constructional 
elements due to their many advantages.  

 
Figure 1: Cross section thin-walled channel beams/columns 
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Ostwald and et al. (Ostwald 2013) as the advantages of thin-walled cold-formed beams they mention: 
good strength properties, relatively low weight, ability to carry heavy loads and a favorable relation 
between the weight of the structure and its load capacity. They are made of a single steel sheet, which 
can be protected against corrosion. Kasprzak et al. (Kasprzak 2019) point out that beams which are 
made in cold forming technology do not need to be re-protected as this process does not damage the 
anti-corrosion coating. In addition, cold forming allows to obtain beams with a large cross section but 
small wall thickness or beams with a complicated cross section. Obst et al. (Obst 2016) also mention 
some advantages of cold forming technology. The authors point out that to produce a beam requires a 
small energy, and the process is cheap. Sabbagh et al. (Sabbagh 2010) write that cold forming of 
members is a simple technology and therefore it is possible to offer a greater variety of profiles, and 
that this will allow for more efficient construction. In their opinion, a very important advantage is the 
appropriate strength to weight ratio.  
 
The cross-section of channel beams/columns has evolved over the last years. New shapes of column 
cross-sections were explored in order to increase their strength, stability and bearing capacity. 
Baldissino et al.  (Baldissino 2019) referred to the load-bearing capacity, because of the high strength-to-
weight ratio, the assessed load-bearing capacity is much higher than the characteristic-experimental 
one. Scientists are investigating increasingly complex, unusual cross-sectional shapes of channel 
beam/columns. The shape of the cross-section has a significant impact on the strength, resistance to 
loss of stability or load bearing capacity of the structure. Huang et al. (Huang 2018) described beams 
with a classic lipped channel cross-section, but with a modified web. Szymczak et al. (Szymczak 2016) 
examined channels with modified flange. They loaded the members with bending moment and 
compressive force. Ren et al. (Ren 2019) describes numerical tests of cold-formed steel perforated rack 
uprights subjected to axial compression. Researchers are also studying other cross-section shapes, such 
as: Z-beams or closed rectangular cross-sections. De Miranda Batista (De Miranda Batista 2010) 
describes channels with stiffened edges of the flange, but also the Z-beams with such bends. The 
stability bearing capacity of axially compressive loaded fixed-ended channels with complex edge 
stiffeners were analyzed by Wang et al. (Wang 2012). C- and Z-beams are also used to construct roofs. 
Wang et al. (Wang 2018) examined channels with a high, modified web and a narrow flange that has 
bends at the edges. Such members are used in the construction of roof sheathing. Yerudkar et al. 
(Yerudkar 2017) compared cold-formed channels with stiffeners on the web or flange.  
 
The studies include actual experimental investigation. The researches consists of description and 
solution of a problem of stability of columns and the influence of cross-section change on the obtained 
load values. By using modern, optical measuring methods, it is possible to investigate the influence of 
distortion of the cross-section on local buckling of short and medium length beams/columns. The non-
standard flanges of considered channel columns reinforce them and increase their stability and a 
strength-to-weight ratio. By changing the parameters defining the shape of cross-section of 
beams/columns such as the size of boxes, the length of lip the strength, stability and load capacity can 
further improved. Many years of experience in analysing the strength and stability of thin-walled beams 
encouraged the author to use a new and modern approach (optical methods).  
 
There are few papers in literature that present the application of optical measuring techniques to the 
structural analysis of thin-walled members. The examples are Styles et al. (Styles 2007), Hühne et al. 
(Hühne 2008) and Miehe et al. (Miehe 2009). In this paper, authors described experimental 
investigations of different structures: beams made of aluminium foam sandwich, perforated cylindrical 
shells and glass polymers. They all were based on the use of ARAMIS optical strain measuring system. 
Urbaniak et al. (Urbaniak 2016) examined thin-walled channel columns and considered three different 
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variants of arrangement of individual layers in an eight-layer laminate. Perret et al. (Perret 2010) 
examined aircraft composite fuselage loaded with compressive force. For the research, similarly to the 
previous authors used the ARAMIS system. Czapski et al. (Czapski 2015), thanks to the strain gauge 
method, determined the deformations at the points of the tested structure, whereas thanks to the 
optical system they obtained deflection maps. The mode of buckling of compressed columns is also 
influenced by column length. Jeleniewicz et al. (Jeleniewicz 2016) examined the classic lipped channel 
cross-section and took into account various columns of different lengths. They used a pulse laser 
scanner and a digital camera. 
 
The presented subject is the development of researches that have been conducted in the Division of 
Strength of Materials and Structures of Poznan University of Technology. Experimental investigations 
loss of stability, distribution of stresses and displacements of cold-formed thin-walled beams were 
presented by Grenda and Paczos (Grenda 2019). 
 
2. Experimental investigation 
Eight thin-walled columns made in cold bending technology were examined. The bending process was 
performed on numerically controlled bending machines, which made it possible to obtain such complex 
cross-sectional shapes presented in Figure 2. 
 

 
Figure 2: Cross-sections of the tested columns 

 
The tested cross sections had mainly stiffeners on the flanges: B5, B7, B8, B9 and B10. The shape of the 
web also had a significant impact on the loss of stability due to compressive loading, so modified web 
shape columns were also examined: B3, B5, B8 and B9. The more classical cross-sections: B0, B1 were 
also examined to assess the effect of non-standard column cross-section shape on the load values. 
Columns with single and double plates on shelves were investigated. Overall dimensions of all tested 
cross-sections are: height H = 80mm, width b = 40mm, wall thickness t = 0,5mm. 
 
Experimental tests were performed, for this purpose optical and strain gauge methods were used. In 
this article we will describe the optical tests performed with the ATOS system, which allows for non-
contact 3D measurements. The measurements are made with a scanner using a structured blue light 
technology. The tested members were loaded with a compressive force applied in the center of gravity 
of the cross-section. Tests were performed on a ZWICK Z100 testing machine with a measuring range of 
0.2 - 100kN. The columns were supported by spacers. The lower spacer blocked three translations, while 
the upper spacer blocked two translations. Translation along the column axis (x axis) was possible. 
Rotations against all axes on both spacers were possible. The tests were carried out until the column 
load capacity was exhausted. The test stand is shown in Figure 3. 
 
For experimental tests, carried out using the strain gauge method, foil resistance strain gauges with a 
constant K=2.01 were used. The strain gauges tested the strain at two points: web and flange. 
Deformations in the measuring points were recorded by computer. During the measurement the 
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following were recorded: measurement time, compressive force and deformation, shortening of 
columns. The tests were carried out in accordance with the requirements of the EUROKOD 3 standard.  

 
Figure 3: Test stand 

 
The ATOS optical system generates test results in the form of 3D images, which were taken at 0.25 
frames per second. The optical test results are obtained by processing this data in GOM Correlate. This 
program allows the measurement of deformation at specific points, which makes it possible to compare 
the optical test results with strain gauges. 
 
3. Results of experimental studies 
The test results were developed on the basis of optical and strain gauge tests. The buckling force and 
maximum force were determined. The critical force values, obtained from the strain gauge method, 
were determined using the linear regression method tangent to the compression plot. The optical 
method allows to estimate the value of the critical force from the moment when the first signs of 
buckling appear.Additionally, the beams were weighed and their stiffness was calculated. The results are 
shown in Table 1.  
 

Table 1: Results of experimental studies 

Beam/column Weight 
(kg) 

Buckling force Fcr 

(kN) 
Maximum force Fmax 

(kN) 
Stiffness C 
(kN/mm) 

B0 0,842 3,89 4,69 4,4 
B1 0,612 1,35 – 3,48 3,89 5,2 
B3 0,614 5,80 – 7,00 9,99 7,2 
B5 0,721 10,42 13,53 8,4 
B7 1,090 7,20 – 8,00 13,63 9,5 
B8 1,115 9,50 – 11,00 17,60 8,4 
B9 1,074 11,30 – 20,13 22,80 11,1 

B10 1,068 3,75 12,75 8,7 
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Columns B0, B7, B8, B9 and B10 are subject to local buckling and columns B1, B3 and B5 are subject to 
distortional buckling. Figure 4 shows the webs of the tested columns and the modes of their buckling. 
The webs of the tested columns show characteristic half-waves for local buckling. Optical testing allows 
the analysis of buckling modes and the time during which the columns start to lose stability. It was 
observed that column B10 began to lose stability 6s after the load started. In the case of column B0 this 
time has increased. This member began to lose stability after 40s. 
 
 

 
Figure 4: Modes of buckling - results of optical tests 

 
The research was carried out until the load capacity of the columns was exhausted. The highest 
maximum force was obtained for column B9. The lowest value of bearing capacity was obtained for 
column B1. Figure 5 shows the modes of destruction of some of the columns tested. 
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Figure 5: Forms of destruction 

Figure 6 shows the results of strain gauge tests in the form of a graph. The results of optical tests and 
strain gauges made it possible to determine the buckling forces for the tested columns. The highest 
value of buckling force was obtained for column B9, the lowest for column B1. 
 

 
Figure 6: Results of strain gauge tests 

 

4. Conclusion 
This article describes experimental research: optical and strain gauge tests of cold-formed, thin-walled 
channel columns with stiffeners on flanges and web. Eight different cross-sections were examined. The 
columns were loaded with axial compressive force. The researches consists of description and solution 
of a problem of stability of columns and the influence of cross-section change on the obtained load 
values. 
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Columns with double flange sheets have suffered a local loss of stability, while columns with single 
flange sheets have suffered a distortional loss of stability. The most resistant to loss of stability are the 
columns with stiffeners and double sheet on the flanges and modified web shape. The shape of the 
flange stiffeners is important when assessing the strength of the columns. The buckling force value for 
the B10 column is low compared to columns that have trapezoidal and box bends on the flanges. The 
differences in the buckling force values may result from the fact that the contact between the sheets on 
the flanges, in the case of column B10, is much smaller than in the case of the other columns. The 
highest values of buckling force and maximum force were obtained for column B9. It is a column with a 
double trapezoidal sheet on the flange and a modified web shape. The above considerations show a 
significant influence of the column cross-sectional shape on its resistance to loss of stability. The proper 
(optimal) shape of cross-section may help to reduce the weight/wall-thickness of columns, even by half, 
without big influence on its load capacity. Column B5 due to trapezoid corrugation of flanges has the 
highest ratio of the buckling load to the beam weight, buckling mode in this case is distortional one 
 
As previously mentioned, the columns lost their stability locally or distortionally. In some cases, when 
the column was close to being exhausted, a general loss of stability was also noticed. Despite the 
different modes of loss of stability, the mechanisms of loss of stability were very similar for the 
examined columns. The mechanisms of destruction are shown in Figure 5. 
 
The main advantage of optical testing is that it gives insight into the movements of the entire column. 
Comparing it with strain gauges, which only allow for measuring deformations at specific points in the 
structure, optical testing gives a broader view of what happens to the structure during loading. It is 
possible to analyse the deformation of the columns at any stage of loading. Optical testing has been 
analyzed in the GOM Correlate program. Measurement points were generated in the middle of the web 
and in the middle of the flange. The location of these points was dictated by the location of the strain 
gauges. This allowed to compare the results of optical tests with those of strain gauges.  
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Abstract 
Tubular structural members with slender cross-sections are susceptible to failure through local buckling 
of their tube walls. Previous numerical studies of steel elliptical hollow sections in compression 
predicted the local buckling modes and the ultimate loads of particularly slender specimens, with the 
results used to calibrate design methods for slender elliptical sections. Although these numerical 
parametric studies were conducted across a wide slenderness range, it was only possible to validate the 
models against experimental results in the low slenderness range since commercially available steel EHS 
are intended to satisfy non-slender geometric limits prescribed by structural design codes. Such 
limitations to the experimental scope are circumvented in the present study through testing of highly 
slender specimens produced using additive manufacturing techniques. A total of eight specimens of 
various cross-sectional aspect ratios and tube wall thicknesses were fabricated at London South Bank 
University using additive manufacturing techniques, which were then tested in compression; the 
observed load-deflection behaviour, ultimate loads, longitudinal strains and failure modes are discussed. 
Through appropriate rescaling of relevant parameters, design predictions for the ultimate load of the 
3D-printed analogues are obtained using a design method intended for use with steel elliptical hollow 
sections. It is shown that the design predictions are safe-sided when compared to the present 
experimental results, with the accuracy generally increasing with aspect ratio and slenderness.  
 
1. Introduction 
Steel elliptical hollow sections (EHS) have found increased use in recent years in construction, having 
been employed in landmark projects such as Heathrow Terminal 5, Madrid Barajas Airport and Cork 
Airport (see Fig. 1a) (Chan et al, 2010). Such sections are characterized by their maximum outer cross-
sectional diameter 2a, their minimum outer cross-sectional diameter 2b and their tube wall thickness t, 
as shown in Fig. 1b. The combination of the mechanical efficiency offered by having a greater major axis 
flexural resistance and the aesthetic appeal of elliptical geometry has been a factor in the increased 
popularity of EHS in steel construction (Ruiz-Teran & Gardner, 2008). Reflecting this increased usage, the 
sections are included in European structural specifications (Comité Européen de Normalisation, 2006) 
and the recent revision to EN 1993-1-1 (Comité Européen de Normalisation, 2018). 
 
Studies into the behaviour of steel EHS are extensive, encompassing cross-section classification (Gardner 
& Chan, 2007), compressive resistance (Chan and Gardner, 2008a), bending resistance (Chan & Gardner, 
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2008b), resistance in shear (Gardner et al, 2008), elastic buckling (Silvestre, 2008) and flexural buckling 
(Chan & Gardner, 2009). Studies have also been conducted on stainless steel EHS (Theofanous et al, 
2009) and on cold-formed steel EHS (Chen & Young, 2020). 

 
a) 

 

b) 

 
Figure 1: a) Steel EHS at Cork Airport; b) cross-sectional geometry of EHS showing dimensions and axes. 

 
Studies into the local buckling of EHS conducted by Silvestre & Gardner (2011) and Insausti & Gardner 
(2011) characterized elastic buckling modes and postbucking behaviour. Leading from these previous 
studies, a numerical parametric study conducted by McCann et al (2016) confirmed that, with increasing 
aspect ratio a/b, the postbuckling behaviour of slender steel EHS in compression transitions from 
unstable imperfection-sensitive behaviour like that observed in cylindrical shells to stable imperfection-
insensitive behaviour like that observed in flat plates. Although the numerical parametric study was 
conducted across a wide slenderness range, it was only possible to validate the models against 
experimental results from Chan & Gardner (2008a) in the relatively lower slenderness range since 
commercially available steel EHS are intended to satisfy non-slender geometric limits prescribed by 
structural design codes. In order to confirm that a design method proposed by McCann et al (2016) for 
slender EHS in compression is valid for use with cross-sections in the high slenderness range, it is 
appropriate that such highly slender specimens be tested. However, the required tube wall thickness 
would be too thin to fabricate or the outer dimensions too large to manipulate for testing. 
 
In order to circumvent such issues, highly slender analogues fabricated from polymer using additive 
manufacturing techniques are investigated in the present study. In the context of structural engineering, 
additive manufacturing techniques have been primarily employed in the production of concrete-framed 
structures (Zhang et al, 2019), with other more limited applications in continuously-printed steel 
reinforcement (Paolini et al, 2019) and fibre-reinforced polymer formwork (Paolini et al, 2019); the 
world’s first 3D-printed metal bridge was fabricated in the Netherlands in 2018 (de Zeen, 2018). Polymer 
structural components fabricated using additive manufacturing techniques offer advantages such as 
better environmental and corrosion resilience, greater precision and reliability, and, if recycled plastic is 
used, more sustainable structures. At present, the cost-effectiveness of using 3D-printed polymers in 
construction is hampered by production speeds and material strengths, but it is forecast that such 
limitations can be surmounted through advances in additive manufacturing and material science. 
 
The objective of the present study is to examine the behaviour of highly slender steel elliptical hollow 
sections in compression through the use of polymer analogues fabricated using additive manufacturing 
techniques; the use of such techniques for educational purposes in structural mechanics has been 
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demonstrated successfully by Virgin (2018). An experimental campaign is described where EHS 
specimens of various cross-sectional aspect ratios and tube wall thicknesses are loaded in compression. 
Results for the ultimate load, the failure mode and the load–deflection behaviour are discussed. 
Comparison is made between the experimental ultimate loads and the design method for slender steel 
EHS proposed by McCann et al (2016), where it is found the design method provides safe-sided results 
with the accuracy increasing with aspect ratio and slenderness. 
 
2. Experimental setup 
In this section, the experimental campaign is described, including discussions on specimen geometry, 
the fabrication method, imperfections and the setup of the apparatus used in the experiments. 
 
2.1 Geometry of EHS specimens 
Eight additive-manufactured EHS specimens were fabricated at London South Bank University (LSBU) 
with cross-sectional aspect ratios a/b = 1.5, 2.0 and 3.0, and nominal tube wall thickness t between 1.5 
mm and 3.0 mm. The specimens were labelled thus: EHS[specimen number]-[2a]-[2b]-[nominal t], e.g. 
Specimen 1 is labelled EHS01-100-50-3.0 (see Table 1). The maximum and minimum outer diameters of 
the sections were chosen so that the mean perimeter Pm is approximately constant for all specimens; 
the values of Pm and the cross-sectional area A calculated using the measured properties of the 
specimens are shown in Table 1. The nominal length L = 280 mm for all specimens, reflecting the 
maximum dimension producible by the printer used; this relatively short length also ensures that global 
buckling is precluded. 
 
2.2 Additive manufacturing process 
Geometric model files created using the nominal dimensions shown in Table 1 were used as input for an 
Ultimaker 3 Extended fused filament fabrication (FFF) printer based in the Digital Architecture 
Laboratory (DARLAB) at LSBU. The specimens were fabricated from filaments of polylactic acid (PLA) 
thermoplastic polymer with a nominal elastic modulus E = 2346.5 N/mm2, a nominal yield strength of 
49.5 N/mm2 and a nominal fracture strain of 5.2% (Ultimaker, 2018); the finished specimens are shown 
in Fig. 2. Considering that the yield strain of S355 steel is 0.17% while that of PLA is 12.5 times higher at 
2.1%, PLA sections exhibit a considerably greater elastic deformation capacity than steel sections and 
are hence more susceptible to failure initiating through buckling as opposed to inelastic effects. 
 

 
Figure 2: Fabricated EHS stub specimens. 

 
Given that extruded filaments of PLA were deposited about the circumference of the section, the 
fabrication process thus leads to a degree of anisotropy within the completed specimens, with the 
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circumferential material properties being greater than those in the longitudinal direction. It was found 
that the degree of anisotropy in the elastic modulus E, which governs local buckling, was minimal. 
 
2.3 Precision of fabrication process 
Prior to testing, the geometry of each specimen was measured in order to assess the level of deviation 
from the nominal dimensions. The outer diameters 2a and 2b, and the specimen length L were found to 
be within 0.3% of the nominal values. Average wall thicknesses t are shown in Table 1 along with the 
standard deviations from the nominal dimensions. As can be seen, the coefficient of variation (COV) of t 
is between 2.4% and 4.0% for all specimens other than Specimen EHS08-105-35-1.5 where COV = 8.6%. 
When applying the design method of McCann et al (2016) in Section 4, the magnitude of the wall 
thickness imperfection ∆w is assumed to be 0.05t for all specimens, which is comparable to the average 
imperfection magnitude of ∆w = 0.051t reported by Chan & Gardner (2008a) for steel EHS. 
 

Table 1: Cross-sectional properties of specimens. 

Specimen a/b 
Wall thickness t 

Pm A 
Nominal Average St.Dev COV 

(mm) (mm) (mm) (mm) (mm) (mm2) 

EHS01-100-50-3.0 2.0 3.00 3.17 0.07 0.024 233 737 
EHS02-90-60-2.0 1.5 2.00 2.07 0.05 0.027 232 478 
EHS03-90-60-2.0 1.5 2.00 2.08 0.05 0.025 232 481 
EHS04-90-60-2.0 1.5 2.00 2.04 0.05 0.025 232 473 
EHS05-100-50-3.0 2.0 3.00 3.10 0.05 0.018 233 721 
EHS06-100-50-1.5 2.0 1.50 1.45 0.06 0.040 238 344 
EHS07-105-35-2.0 3.0 2.00 2.02 0.05 0.024 228 459 
EHS08-105-35-1.5 3.0 1.50 1.39 0.13 0.086 230 344 

 
2.4 Buckling of elliptical sections 
The critical local buckling stress fcr of an elliptical section is estimated by adapting the equivalent 
expression for a circular section: 
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where the Poisson’s ratio ν = 0.35 for PLA and the equivalent diameter Deq = 2(a2/b); this value is twice 
the maximum radius of curvature in the elliptical section and reflects the point of initiation of buckling 
being at the extreme of the minimum radius. The slenderness parameter λ  is defined as: 
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According to the classification limits prescribed by EN 1993-1-1 (CEN, 2018), an EHS in compression is 
classified as susceptible to local buckling if Deq/tε2 > 90, where the material modification factor ε = 
[(235/fy)(E/210000)]0.5. The values of Deq, Deq/tε2, fcr and λ  calculated using the measured properties of 
the specimens are shown in Table 2. It should be noted that the maximum value of Deq/tε2 found for the 
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steel EHS used to validate the model of McCann et al (2016) was 189, thus demonstrating the relatively 
high slendernesses being investigated presently. 
 

Table 2: Buckling parameters calculated using measured properties. 
Specimen a/b Deq Deq / tε2 fcr  λ  

    (mm)   (N/mm2)   
EHS01-100-50-3.0 2.0 200 1189 45.9 1.04 
EHS02-90-60-2.0 1.5 135 1233 44.2 1.06 
EHS03-90-60-2.0 1.5 135 1225 44.5 1.05 
EHS04-90-60-2.0 1.5 135 1246 43.8 1.06 
EHS05-100-50-3.0 2.0 200 1216 44.8 1.05 
EHS06-100-50-1.5 2.0 200 2603 20.9 1.54 
EHS07-105-35-2.0 3.0 315 2948 18.5 1.64 
EHS08-105-35-1.5 3.0 315 4281 12.7 1.97 

 
2.5 Experimental method 
Compression tests were conducted on the specimens in the Strength of Materials laboratory at London 
South Bank University. The specimen was placed in a Zwick/Roell 250 kN universal testing machine as 
shown in Fig. 3a; care was taken to position the specimens so that the load was applied as concentrically 
as possible in order to achieve an even stress distribution throughout the cross-section. A linear variable 
transducer (LVDT) was placed in contact with the upper loading platen in order to record the vertical 
displacement. Strain gauges were affixed to Specimen 1 at the positions indicated in Fig. 3b in order to 
measure the longitudinal strain (strain gauges were not affixed to the other specimens). The specimens 
were loaded in displacement control at a rate of 0.5 mm/min until failure. 
 
a) 

 

b) 
 

 

Figure 3: a) Specimen 1 in position for testing; b) locations of strain gauges at mid-height cross-section. 
 
3. Experimental results 
The load–displacement relationships recorded for each specimen are shown in Fig. 4, where it can be 
seen that each specimen underwent linear elastic deformation up to a sudden failure with a negligible 
amount of softening visible. The failure mode observed in each specimen involved sudden brittle 
ruptures initiating at the point of maximum radius of curvature, i.e., either point A or C in Fig. 3b. The 
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experimental ultimate load Nu,exp for each specimen is compared with the fully-effective compressive 
resistance Afy in Table 3 (the design predications for cross-sectional resistance Nc,Rd discussed in Section 
4 are also shown). It can be seen that the utilization of the full cross-sectional resistance diminishes with 
increasing slenderness, indicating that buckling had indeed occurred. Specimen EHS01-100-50-3.0 is 
shown post-failure in Fig. 5 – ruptures occurred at two cross-sections in each specimen tested. 
 

 
Figure 4: Load–displacement curves for all specimens. 

 
Table 3: Experimental ultimate loads. 

Specimen a/b λ   Afy Nu,exp Nc,Rd Nu,exp / Afy Nu,exp / Nc,Rd 

      (kN) (kN) (kN)    
EHS01-100-50-3.0 2.0 1.01 36.5 26.6 19.1 0.73 1.39 
EHS02-90-60-2.0 1.5 1.03 23.7 17.9 12.0 0.76 1.50 
EHS03-90-60-2.0 1.5 1.03 23.8 16.2 12.1 0.68 1.34 
EHS04-90-60-2.0 1.5 1.04 23.4 16.1 11.7 0.69 1.37 
EHS05-100-50-3.0 2.0 1.03 35.7 29.7 18.5 0.83 1.61 
EHS06-100-50-1.5 2.0 1.50 17.0 8.76 5.14 0.51 1.71 
EHS07-105-35-2.0 3.0 1.60 22.7 8.22 7.10 0.36 1.16 
EHS08-105-35-1.5 3.0 1.92 15.8 4.10 3.97 0.26 1.03 

 

 
Figure 5: Specimen EHS01-100-50-3.0 post-failure. 

 
The strains at mid-height are plotted against the average compressive stress in Fig. 6 for Specimen 
EHS01-100-50-3.0. It can be seen that the strain is higher at points A and C where the section is less stiff 
locally at the points of minimum curvature. The effective elastic modulus of the section calculated at 
point A is 2397 N/mm2, a close approximation of the nominal value of 2346 N/mm2. 
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Figure 6: Longitudinal strains measured at the mid-height cross-section of Specimen EHS01-100-50-3.0. 

 
4. Comparison with previous design method 
The design method proposed by McCann et al (2016) is used to calculate a strength reduction factor ρ 
such that the design resistance in compression of EN 1993-1-1 (CEN, 2018) Nc,Rd = ρ A fy / γM0; here, the 
material partial factor γM0 is set equal to unity. The design method is not reproduced here in full; it 
suffices to say that it reflects the dependence of ρ on the local buckling slenderness, the aspect ratio a/b 
and the imperfection magnitude ∆w. The calculated values of Nc,Rd are shown in Table 3. In Fig. 7, design 
curves are plotted for a/b = 1.5, 2.0 and 3.0 with the imperfection magnitude ∆w = 0.05t; the values for 
Nu,exp / Afy shown in Table 3 are also overlain. It can be seen that the design curves provide safe-sided 
predictions for all the experimental results with the accuracy generally increasing with aspect ratio and 
slenderness as also indicated by the values of Nu,exp / Nc,Rd shown in Table 3. 
 

 
Figure 7: Comparison of experimental and design predictions for the local buckling reduction factor ρ. 

 
5. Conclusions 
A sample of eight elliptical hollow section specimens manufactured from polylactic acid polymer using 
the fused filament fabrication technique were tested in compression in order to assess their 
susceptibility to local buckling. It was found that, although the failure mode was brittle and very sudden, 
the results for ultimate load, failure mode and longitudinal strains indicate that local buckling occurred 
at the point of minimum curvature within the cross-sections. The experimental results for ultimate load 



 8 

were compared with the predictions of an existing design method for slender steel elliptical hollow 
sections in compression. It was found that, upon rescaling the slenderness parameter to account for the 
change in material, the design method provided safe-sided predictions for the cross-sectional resistance 
for all specimens, with the accuracy increasing with aspect ratio and slenderness. This provides 
additional validation of the applicability of the design method for use with highly-slender specimens in 
various materials. 
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Coupled buckling of hybrid thin-walled channel sections under compression in 
the elastic range 
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Abstract 
Nonlinear buckling problems of hybrid thin-walled C-columns in the elastic range are discussed. A 
multimodal approach using Koiter’s approximation theory (SAM) was assumed to investigate an effect of 
different buckling modes on the ultimate load-carrying capacity. All columns were made of two layers of 
isotropic materials characterised by various mechanical properties and were simple supported at the 
ends. The results attained were verified with the finite element method (FEM). The boundary conditions 
applied in the FEM allowed us to confirm the eigen-solutions obtained within Koiter’s theory with very 
high accuracy. Nonlinear problem was solved using the Riks algorithm, which allows for investigating 
unsteady paths. The results for the ultimate load-carrying capacity obtained within the FEM are higher 
than those attained with Koiter’s approximation method, but the leap takes place on the identical 
equilibrium path as the one determined from Koiter’s theory. 
 
 
1. Formulation of the problem 
A problem of rapid, unexpected exceeding the load-carrying capacity has been discussed on the example 
of hybrid thin-walled C-columns (Fig. 1). The walls of the columns under investigation were made of two 
layers. The aluminum layer was outer one. The titanium layer was inner one. Nonlinear buckling 
problems were solved within Koiter’s approximation theory. A multimodal approach was assumed to 
investigate an effect of different buckling modes on the ultimate load-carrying capacity (Kolakowski Z., 
Teter A. 2016). The conducted numerical simulations allowed for solving the linear eigenproblem and 
components of membrane sectional forces. Distributions of membrane sectional forces are in balance 
based on the linear solution it is possible to indicate the eigenvalue and its corresponding eigenvectors, 
which can affect rapid, unexpected exceeding the load-carrying capacity of the hybrid thin-walled 
structure under discussion. The results were verified with the FEM in a full range of loads. 
 
While selecting the column lengths, the authors followed the principle that the determined maximal 
absolute values of longitudinal forces should attain their maxima in the solutions to the eigenproblem, 
which causes strong interactions between the selected eigenmodes. Summing up the results obtained 
for the assumed lengths and the determined maximal absolute values of membrane longitudinal forces 
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with their corresponding buckling modes, one can see that there is a coupling between them based on 
the displacement of the corner for a given mode, it is possible to indicate that it is caused by a strong 
longitudinal sectional force. The reverse reasoning is correct as well (Zaczynska M., Kolakowski Z. 2020, 
Zaczynska M., Kazmierczyk F. 2020, Teter A., Kolakowski Z. 2020). An effect of distortional modes on 
post-buckling equilibrium paths and the load-carrying capacity of structures was also investigated in 
(Martins A.D. et al. 2017, 2018, 2019, Niu R. et al. 2014, Szymczak C., Kujawa M. 2017, 2019). 
 

 
Figure. 1. Cross-sections of the hybrid columns under analysis and FEM’s boundary conditions 

 
In the analytical-numerical method (SAM), it is possible to consider a precisely defined and finite 
number of buckling modes considered in the interaction of these modes. This allows one to determine 
the key modes which decide about post-buckling equilibrium paths and the load-carrying capacity of the 
structure. In the FEM, it is practically not possible to choose which modes are to be considered. 
Including two anti-symmetrical modes in the multimodal approach causes a significant decrease in the 
load-carrying capacity, and the stronger it is, the higher values of longitudinal sectional forces are 
observed for the selected modes. The most crucial interactions of anti-symmetrical modes take place for 
the distortional global and local mode. In the FEM, it was not possible to confirm the results obtained 
when the anti-symmetrical modes were analysed. The ultimate load-carrying capacity determined 
within the FEM corresponds to the SAM only if symmetrical modes are considered. 
 
2. Results and discussion 
Detailed simulations were carried out for simple supported columns with a C-section of medium lengths. 
The web width of the C-sections was 80mm, the flange with was 40 mm and the thickness of the walls 
under analysis is 1mm. The columns were made of two isotropic materials i.e., of aluminium and 
titanium. The thickness of each layer is the same and equal to 0.5mm. The material constants for the 
aluminium layer are: Young’s modulus – 71GPa, Poisson’s ratio – 0.33, and for the titanium layer – 
107GPa and 0.34, respectively. 
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Table 1 lists values of bifurcational stresses for two assumed total lengths (i.e., 210mm and 250mm) of 
the channel determined with two methods, namely: the SAM and the FEM. For the SAM, maximal 
absolute values of membrane sectional forces and several half-waves (in brackets) along the longitudinal 
direction that form along the length of the columns under analysis (denoted as the parameter m) and 
letter notations of the conditions on the axis of symmetry of the cross-section (i.e., S or A), are given. 
 

Table 1. Bifurcational stresses (i.e., i in MPa) and maximal absolute values of membrane forces  
(i.e., |Nxi|max/|Nyi|max/|Nxyi|max in N/mm) for selected buckling modes  

  L=210mm L=250mm 

Mode number 
denoted as i-index 

Bifurcation parameters SAM FEM SAM FEM 

 
1 

1   in MPa 49.7 (1S) 49.4 60.2 (1S) 59.8 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 1.24/0.21/0.25 - 1.55/0.18/0.27 - 
 

2 
2   in MPa 332 (1S) 330 442 (1S) 438 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 19.4/1.84/4.05 - 27.6/1.85/4.92 - 
 

3 
3   in MP] 3980 (1S) 3859 3254 (1S) 3186 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 458/19.1/91.3 - 370/13.6/63.8 - 
 

4 
4  in MPa 35.3 (2S) 34.9 36.0 (2S) 35.6 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 0.68/0.50/0.27 - 0.77/0.38/0.25 - 
 

5 
5   in MPa 115 (2S) 114 145 (2S) 145 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 6.75/2.16/2.39 - 8.40/1.98/2.64 - 
 

6 
6  in MPa 1303 (2S) 1302 1747 (2S) 1749 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 4.60/9.17/2.05 - 7.02/8.83/2.44 - 
 

7 
7   in MPa 96.5 (1A) 95.1 124 (1A) 122 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 3.47/0.39/0.98 - 4.71/0.36/1.10   
 

8 
8  in MPa 1650 (1A) 1638 1580 (1A) 1553 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 139/5.94/24.0 - 214/4.54/30.6 - 
 

9 
9  in MPa 3054 (1A) 2968 3414 (1A) 3377 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 190/7.34/35.0 - 95.0/4.05/23.1 - 
 

10 
10  in MPa 48.6 (2A) 48.1 54.1 (2A) 53.6 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 1.52/0.71/0.80 - 1.75/0.59/0.81 - 
 

11 
11  in MPa 596 (2A) 596 785 (2A) 791 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 24.6/7.13/8.33 - 33.7/6.77/9.79 - 
 

12 
12  in MPa 1569 (2A) 1533 2085 (2A) 2036 

|Nxi|max/|Nyi|max/|Nxyi|max in N/mm 31.8/11.8/15.4 - 48.3/11.5/19.5 - 

 
The buckling modes from Table 1 for shorter length of the channel (i.e., 210 mm) are shown in Fig. 2 
that: 
(a) modes 1-3 are symmetrical modes, corresponding to subsequent modes with one half-wave along 
the column length (i.e., m=1), 
(b) modes 4-6 are symmetrical modes, corresponding to subsequent modes with two half-waves along 
the column length (i.e., m=2), 
(c) modes 7-9 are anti-symmetrical modes, corresponding to subsequent modes with one half-wave 
along the column length (i.e., m=1) 
(d) modes 10-12 are anti-symmetrical modes, corresponding to subsequent modes with two half-waves 
along the column length (i.e., m=2) 
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(a)  (b)  

(c)  (d)  
Figure 2. Buckling modes of the channel of the total length 210 mm (Table 1): symmetrical modes 1,2,3 - (a), 

modes 4,5,6 – (b) and anti-symmetrical 7,8,9 – (c), modes 10,11,12 – (d) 

 
In Table 2, the dimensionless ultimate load-carrying capacities σS/σ4 obtained with the SAM and the FEM 
for both the lengths of channels under consideration are presented. In the SAM, 3-, 4- and 6-modal 
approaches were considered, selecting various combinations of modes (Table 1 – buckling modes 1-12). 
For the first two, only symmetrical modes were considered, whereas when also anti-symmetrical modes 
were accounted for, a 6-modal approach was applied. It is caused by a necessity to consider an even 
number of anti-symmetrical modes in the interaction. Indices of buckling modes (i.e., i-index), which 
were considered in the SAM, and the dimensionless value of the ultimate load-carrying capacity referred 
to the minimal value of the buckling load, i.e., σs/σmin=σs/σ4 for the given total length of the column, 
were also given. In the channel's case of the length 210mm, for an interaction of 3 modes, the ultimate 
load-carrying capacity was not obtained. The post-buckling equilibrium path is an ascending curve. 
 
Similar differences in the evaluation of the load-carrying capacity when a coupled interaction of anti-
symmetrical buckling modes in the SAM multimodal approach was included and an invisible effect of 
these modes on the load-carrying capacity in the FEM were found in Teter A., Kolakowski Z. 2020. 
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Table 2. Absolute ultimate load-carrying capacity of channels 

Total length  
L in mm 

SAM FEM 

J-mode approach Mode numbers  
(i-index in Table 1) 

used in SAM 

σs/σmin=σs/σ4 σs/σmin=σs/σ4 

 
 

210 

3 4; 1; 2 -  
 

1.49/1.20* 
4; 1; 3 - 

4 4; 1; 2; 3 1.42 

 
6 

4; 1; 2; 3; 8; 9 1.42 

4; 1; 2; 3; 8; 10 0.94 

4; 1; 2; 3; 9; 10 0.95 

 
 

250 

3 4; 1; 2 2.52  
 

1.49/1.20* 
4; 1; 3 1.81 

4 4; 1; 2; 3 1.39 

 
6 

4; 1; 2; 3; 8; 9 1.39 

4; 1; 2; 3; 8; 10 0.90 

4; 1; 2; 3; 9; 10 1.04 

* The Riks algorithm loses convergence 

 
In the FEM numerical simulations, the Riks algorithms were employed to solve the nonlinear problem of 
stability loss. This algorithm allowed us to catch the effect of a jump between two stable equilibrium 
paths. The post-buckling equilibrium path determined with the Riks method under low overloads is the 
same as the one obtained within the SAM (Fig. 3). At higher overloads, it overestimates the ultimate 
load-carrying capacity, then it jumps onto another equilibrium path, coming closer to the SAM path, 
when only symmetrical buckling modes are accounted for in the interaction. In the authors’ opinion, a 
jump between equilibrium paths results from the fact that new buckling modes appear. It causes that 
the outcomes attained within both the methods become closer. 
 

 
Figure 3. Comparison of dimensionless equilibrium paths for channels of the length 250mm 

 
Fig. 4 shows a destruction form that corresponds to the ultimate load-carrying capacity σs/σ4 of 
channels of the lengths: 210mm and 250mm. The FEM destruction forms for both the column lengths 
are identical. Two buckling half-waves appear along the channel length. In the half-length, a visible 
deviation from the straight line can be seen, which corresponds to an effect of the distortional buckling 
mode. 
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Figure 4. Destruction form for the channel of the lengths 210mm/250mm in the ultimate point 

 
 
4. Conclusions 
The post-buckling equilibrium path determined with the Riks method (FEM) under low overloads is the 
same as the one obtained within the SAM. At higher overloads, it overestimates the ultimate load-
carrying capacity, then it jumps onto another equilibrium path, coming closer to the SAM path, when 
only symmetrical buckling modes are accounted for in the interaction. A jump between equilibrium 
paths results from the fact that new buckling modes appear. It causes that the results attained within 
both the methods become closer. 
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Abstract 
In the conventional design paradigm, buckling of slender structural members is seen as a route toward 
failure and measures are taken to avoid its onset. In recent years, a new approach challenging this 
paradigm is emerging where the mechanical instability of slender elements is utilised to achieve novel 
modes of functionality. By adopting such a framework, the flexural-torsional buckling of frame 
geometries can be exploited as a driver to change the shape of slender structural frames to fulfil specific 
shading functionalities. This study is concerned with the numerical simulation of recently developed 
simple frames in which out-of-plane buckling of component members is judiciously harnessed to 
construct adaptive shading modules. Advanced numerical simulations are conducted using Abaqus 
software to gain a better understanding of the factors that affect the behaviour and performance of the 
proposed solutions. Building on the gained insight, a comprehensive search strategy is devised for 
finding optimum solutions for the governing geometrical and actuation parameters. Within the 
constructed search space, non-linear post-buckling analyses are carried out to determine the resultant 
shading area and to quantify the influence of the governing parameters.  
 
 
1. Introduction  
The rising public awareness of the environmental implications of generating energy using conventional 
fuels and the need to minimise energy consumption have stimulated great interest in building energy 
usage, especially the correlations between climate and daylight and visual comfort (Fiorito, Sauchelli et 
al. 2016). The ever-increasing demand for improving space heating in winter and comfort cooling in 
summer has resulted in a substantial increase in building energy consumption (Lam, Wan et al. 2008). 
Motivated by the requirements for reducing building energy consumption and CO2 emissions, adaptive 
façade systems have emerged in the construction industry. As the interface that interacts with the 
external environment, the building façade plays a pivotal role in blocking and absorbing solar irradiance. 
Adaptive shading facades have gained extensive attention due to their prominent advantages, including 
lower energy consumption in the cold season, protection from external noise and wind loads, as well as 
their high-tech image. A high-performance building shading system can be applied to regulate solar 
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radiations and heat gains, thereby controlling the indoor temperature to minimise heating and cooling 
loads and improve building thermal comfort to achieve low energy consumption. Dakheel and Aoul 
(2017) found that active shading systems could reduce 12% to 50% of the building cooling energy 
consumption.  Nielsen et al. (2011) quantified the potential reduction in energy demand by 
implementing automated dynamic solar shading. They suggested that the shading façade showed a 
decrease in total annual energy demand between the worst and the best-performing facades, 
amounting to approximately 12% - 16% depending on the facing orientation.  
 
Although conventional passive façade technologies, especially external shading devices, can effectively 
control heat gain and daylights in buildings, they still have shortcomings. One of the most significant 
limitations of static passive façades is their inability to adapt to changeable external weather and 
temperature conditions (Aldawoud 2013). On the contrary, active shading systems provide a superior 
approach that allows the user to directly control the shading devices according to the exterior 
environment and occupants’ requirements. Some typical adaptive shape morphing systems include 
smart glazing systems (Long and Ye 2014, Favoino, Giovannini et al. 2017), dynamic building-integrated 
photovoltaic (BIPV) modules (Liu, Duan et al. 2010) and shape morphing devices (Fiorito, Sauchelli et al. 
2016). While smart glazing systems and BIPV modules have been investigated extensively, shape 
morphing façade systems still require a complete understanding. They have immense potential to 
exploit shape morphing mechanisms by controlling materials, and geometrical and actuation parameters.  
 
As stated by Fiorito et al. (2016), the design of shape morphing solar shadings should consider two 
aspects: climate adaptivity, and daylight and visual comfort. Some innovative thermally activated solar 
shading devices have been developed and studied. Lienhard et al. (2011) proposed a Flectofin façade 
shading system using glass fibre reinforced polymer (GFRP). This façade shading system was inspired by 
the sophisticated valvular pollination mechanism of the Bird-Of-Paradise flower. A simple Flectofin 
model contains a thin shell element (a “wing”) connected orthogonally to a rib or beam element (the 
“backbone”). A uniaxial bending of the backbone could introduce subsequent elastic deformation to the 
wing triggered by torsional buckling. Doumpioti et al. (2010) developed a novel facade system for the 
Piraeus Tower controlled through rule-based collective intelligence and empowered by integrated shape 
memory alloys (SMAs). The SMA strips can change their shape to decrease the transparency of the 
façade and increase the ventilation to the interior when there is sufficient solar heat gain on the façade.  
 
In this paper, the authors aim to provide an insight into the shape morphing solution that can achieve 
large deformation by induced controlled buckling. The proposed shading façade system is a three-
member frame that can generate large out-of-plane flexural-torsional buckling deformations when 
subjected to torques at the supports. Numerical simulations using the finite element method (FEM) are 
conducted to obtain the non-linear post-buckling behaviour of the proposed frame. The paper focuses 
on discovering the possible optimum solutions to achieve a large shading area/volume with a low 
actuation force. The optimisation analyses are conducted by coupling the Matlab optimisation toolbox 
with Abaqus finite element models. Different objective functions are considered to investigate the 
impacts of the geometric variables and actuation forces. 
 
2. Buckling analysis of a three-member frame subjected to end torques 
2.1 Problem statement 
This paper investigates the buckling behaviour of thin-walled three-member frames with rectangular 
cross-section subjected to end-torsional moments at the supports. The three beam members are all 
placed within the XY-plane, and the undeformed frame is symmetric about the centreline placed along 
the Y-axis, as shown in Fig. 1(a). The inclined members, Member 1 and Member 3, are positioned with 
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an angle α with respect to the X-axis, while Member 2 is parallel to the X-axis. The total length of the 
frame (LT) is equivalent to the summation of the lengths of two inclined members (2L1) and the central 
member (L2) (i.e. LT = 2L1 + L2). The frame is built using a steel strip with a cross-section of H × t (width × 
thickness), as shown in Fig. 1(b). 
 
The boundary conditions at supports A and D are considered equivalent to typical built-in support 
conditions, and are defined based on the local coordinate systems. The only unconstrained degree of 
freedom at the built-in supports is the twist rotation, which allows members 1 and 3 to rotate about 
their longitudinal axes; i.e. apart from the twist rotation (θ), all translational and rotational DOFS at the 
supports are restrained. Torques (T) are applied at the supports to generate the twist rotations. 
 

 

 
(b) Cross-section 

 
(a) 3D view (c) Plan view 

Fig. 1. Schematic diagram of a three-member frame subjected to end twist rotations 
 
2.2 Numerical analyses 
As determined from a static pre-buckling analysis, when applying torques (T) at supports, bending 
moments (T cot(α)) are generated simultaneously to achieve equilibrium. Thus, when the inclinations (α) 
of members 1 and 2 are angles other than 90° (Fig. 1c), the applied torsion is accompanied by bending 
deformations out of the plane of the frame. As the applied torques rotate the supports, the stiffness of 
the inclined members against out-of-plane bending declines, and large out-of-plane deflections are 
induced through buckling and bending deformations. Therefore, the post-buckling behaviour of the 
three-element frame is inherently geometrically non-linear. ABAQUS is herein used to perform the non-
linear post-buckling analysis using shell finite elements. 
 
A non-linear analysis is performed using the general static method in Abaqus/standard considering both 
the geometric non-linearity and material inelasticity. Due to the abrupt change in response (i.e. 
bifurcation) at the point of buckling, the post-buckling problem needs to be transformed into a problem 
with a continuous response by introducing a geometric imperfection pattern. The plasticity property of 
the steel is specified using typical true stress-strain values for high-grade steels. Pre-defined twist 
rotations (θ) at the supports, with the same magnitude but opposite sign, are enforced in the non-linear 
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analysis. The applied torques are adjusted to increase twist rotations (θ) until reaching the target value 
and generate out-of-plane deflections, which can be utilised to produce a shading area (Fig. 2).  
 

 

 

(a) 3D view (b) Side view 
Fig. 2: Schematic diagram showing shading area generated by buckling of frame 

 
2.3 Particle swarm optimisation (PSO) 
The research presented in this paper aims to investigate the parameters influencing the function 
optimisation of shading area induced by post-buckling of the three-member frame. The Matlab 
optimisation toolbox thereby is called in the Abaqus non-linear buckling analyses to accomplish optimal 
design solutions. The main available optimisation tools in Matlab (Coleman, Branch et al. 1999) include 
Particle Swarm Optimisation (PSO), Genetic algorithm (GA) and Pattern Search (PS), which are coded 
algorithms that can be implemented to find optimal solutions. Herein, PSO is selected to attain the 
optimal combinations of frame configurations and enforced twisting angles (θ) to achieve the maximum 
shading area.  
 
Particle Swarm Optimisation (Kennedy and Eberhart 1995, Shi and Eberhart 1998) has become a 
favourable optimisation algorithm for discovering optimum solutions for various problems in the design 
and engineering fields (Alam 2016). Particle swarm optimisation is a population-based search algorithm 
inspired initially by social behaviour displayed by a bird block or fish school to fill their needs in the 
search space (Wang, Tan et al. 2018). At the beginning of the PSO, initial particles are generated with 
initial velocities, and the objective function is assessed at each particle location. Then, the optimal 
solutions are found by iteratively updating the particle locations, their velocities and the best locations 
of their neighbours until the algorithm reaches a convergence criterion. The default number of particles 
for each iteration is ten times the number of variables. The maximum number of iterations, function 
tolerance, variable boundaries and initial configurations are stated explicitly for the numerical example 
in Section 3. 
 
3. Numerical example  
This section presents an example to demonstrate the optimisation analysis of the developed FE non-
linear post-buckling analysis for a frame with a high width-to-thickness ratio (H/t ≫ 1). In the problem 
considered, the frames have a total length LT = 2L1 + L2 = 2000mm and a constant cross-section 40mm × 
1mm in all three members. In the conducted numerical analyses, the S4R element in Abaqus is utilised, 
which is a general-purpose 4-node, quadrilateral, stress or displacement shell element with reduced 
integration. 
 

https://en.wikipedia.org/wiki/Iterative_method
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Three variables are considered for the optimisation purpose, the length of the inclined members (L1), 
the inclined angle (α) and the twist rotation at the supports (θ). The lower and upper boundaries of L1 
are 50mm and 800mm, respectively. The inclined angle α can range from 5° to 90°, and the applied 
twisting angle θ can range from 20° to 180°. Particle swarm optimisation (PSO) is coupled with Abaqus 
to search for the variables for optimising each objective function. The maximum number of iterations of 
this optimisation problem is set to be 80, and the function tolerance is defined as 10-4. Three objective 
functions Ei (i = 1, 2 and 3) are considered to investigate the impacts of various parameters to the 
optimum solutions: 
 

 3 1 2
1

sin ,U L LE α
θ

× ×
=   (1) 

 3 1 2
2

sin
,

U L L
E

α
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× ×
=   (2) 

 3 1 2
3
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,
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E

α
θ

× ×
=   (3) 

 
where U3 is the out-of-plane deflection at the mid-length of the central beam (i.e. member 2). The 
cuboid shading volume formed by the frame and the out-of-plane deformation can be estimated as  

α× ×3 1 2sinU L L . The twist rotation (θ) is placed at the denominator of the objective functions to 
represent its inversely proportional relationships. The square roots in E2 and E3 are established to reduce 
the impact of the terms L1 sinα or L2. 
 
The PSO running processes considering the three objective functions are shown in Fig. 3 to Fig. 5. As 
stated, the PSO processes examined a default population of 30 cases for each iteration. The optimisation 
processes for E1, E2 and E3 terminated in the 48th, 48th and 51st iteration, respectively, when the relative 
difference between the best objective function value and the last 20 iterations (i.e. default maximum 
stall iterations) was less than the pre-defined function tolerance 10-4. 
 

 
Fig. 3: Running process of PSO coupling with Abaqus for objective function E1 
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Fig. 4: Running process of PSO coupling with Abaqus for objective function E2 

 

 
Fig. 5: Running process of PSO coupling with Abaqus for objective function E3 

 
The optimum solutions of the three analyses are tabulated in Table 1. It can be seen that the optimal 
frame configurations and twisting angles θ are similar for the three examined objective functions. As a 
result of the post-buckling performance, the out-of-plane deflections for the optimum solutions (i.e. 
494.0mm) reach about 90% of the length of the inclined members. The resultant post-buckling shape 
using the optimum solution for E1 are extracted from Abaqus software and shown in Fig. 6. It 
demonstrates that the non-linear buckling behaviour of the three-member frames can be regulated and 
functionalised to attain large shape morphing and generate large shading areas. 
 

Table 1: Optimised results of a frame with constant widths using three objective functions 

  
L1 

(mm) 
L2 

(mm) 
α 
(°) 

θ 
(rad) 

u3 

(mm) Ei (× 103)  Iterations  

E1 539.2 921.6 72.4 2.416 493.4 96314.4 48 
E2 560.3 879.4 70.5 2.382 494.1 141.3 48 
E3 517.2 965.6 71.3 2.416 490.9 4343.2 51 
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(a) 3D view (b) Side view 
Fig. 6: The frame shape obtained from Abaqus post-buckling analysis using the optimum solution for E1  

 
4. Conclusions 
This paper presents an optimisation framework for the non-linear post-buckling analysis of three-
member frames subjected to torques to maximise the ratio of shading volume over twist rotations at 
the supports. Finite element models considering geometry and material non-linearity are defined using 
Abaqus software for frames with various configurations and enforced twist rotation at two supports. 
The Matlab optimisation tool PSO is coupled with Abaqus to search for the optimised solutions.  
 
The study demonstrates the feasibility of achieving structural morphing via functionalised non-linear 
buckling and the excellent potential of employing such structural systems in the construction industry to 
reduce building energy consumption. The optimised solutions of the numerical example in Section 3 
show significant out-of-plane deflections, which create large shading areas for all three considered 
objective functions. It provides an insight into delivering sustainable building solutions via their 
capability to undergo shape morphing to facilitate temperature control. 
 
Acknowledgments 
This project was undertaken as part of the Australian Research Council (ARC) Discovery Project 
DP170104016. 
 

References 
Al Dakheel, J. and K. Tabet Aoul (2017). "Building Applications, opportunities and challenges of active 

shading systems: A state-of-the-art review." Energies 10(10): 1672.  
Alam, M. N. (2016). "Particle swarm optimization: algorithm and its codes in MATLAB." DOI: 

10.13140/RG.2.1.4985.3206.  
Aldawoud, A. (2013). "Conventional fixed shading devices in comparison to an electrochromic glazing 

system in hot, dry climate." Energy and Buildings 59: 104-110.  
Coleman, T., et al. (1999). "Optimization toolbox." For Use with MATLAB. User’s Guide for MATLAB 5, 

Version 2, Relaese II.  
Doumpioti, C., et al. (2010). Embedded intelligence: Material responsiveness in façade systems. 

Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in 
Architecture (ACADIA), ISBN 978-1-4507-3471-4: 258-262. New York.  

Buckled Shape 

Original Shape 

Buckled Shape 

Original Shape 



 8 

Favoino, F., et al. (2017). Smart glazing in Intelligent Buildings: what can we simulate? All eyes on glass: 
conference proceedings of Glass Performance Days 2017, 28-30 June 2017, Tampere, Finland, Glass 
Performance Days, Glaston Finland Oy.  

Fiorito, F., et al. (2016). "Shape morphing solar shadings: A review." Renewable Sustainable Energy 
Reviews 55: 863-884.  

Jayathissa, P., et al. (2017). "Optimising building net energy demand with dynamic BIPV shading." 
Applied Energy 202: 726-735.  

Kennedy, J. and R. Eberhart (1995). Particle swarm optimization. Proceedings of ICNN'95-international 
conference on neural networks, IEEE.  

Lam, J. C., et al. (2008). "Building energy efficiency in different climates." Building Conversion and 
Management 49(8): 2354-2366.  

Lienhard, J., et al. (2011). "Flectofin: a hingeless flapping mechanism inspired by nature." Bioinspiration 
& biomimetics 6(4): 045001.  

Liu, B., et al. (2010). "Photovoltaic DC-building-module-based BIPV system—Concept and design 
considerations." IEEE Transactions on Power Electronics 26(5): 1418-1429.  

Long, L. and H. Ye (2014). "Discussion of the performance improvement of thermochromic smart glazing 
applied in passive buildings." Solar Energy 107: 236-244.  

Nielsen, M. V., et al. (2011). "Quantifying the potential of automated dynamic solar shading in office 
buildings through integrated simulations of energy and daylight." Solar Energy 85(5): 757-768.  

Shi, Y. and R. Eberhart (1998). A modified particle swarm optimizer. 1998 IEEE international conference 
on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. 
No. 98TH8360), IEEE.  

Vergauwen, A., et al. (2014). The design and physical modelling of deployable structures based on 
curved-line folding. 4th International Conference on Mobile, Adaptable and Rapidly Assembled 
Structures, MARAS.  

Wang, D., et al. (2018). "Particle swarm optimization algorithm: an overview." Soft Computing 22(2): 
387-408.  

 
 



 

Proceedings of the 
8th International Conference on  

Coupled Instabilities in Metal Structures 
Lodz University of Technology, Poland, July 12-14, 2021 

 
 
 
 

Shading module with buckling as driver for shape morphing 
 

Mani Khezri1, Kim J.R. Rasmussen2 
 
 
Abstract 
The recent requirements in construction for lower energy consumption have accelerated the trend 
towards the use of high performance buildings. In these Nearly Zero Energy Buildings (NZEB), simple 
measures such as natural light control are practiced for maximising the light intake and minimising the 
heat gain, as required. These modern building envelopes interact with the external environment and are 
designed to respond to occupant demand, achieving the target energy efficiency and comfort needs. In 
these kinetic façades, shape morphing triggered by buckling is targeted for energy-saving structural 
applications.  Among the structural forms that are suitable for such applications are thin plates, which are 
prone to buckling under small in-plane strains. This study presents a novel concept with application in 
shading control modules. In the proposed models, buckling of slender plates are configured to create a 
bistable mechanism with closed and open states. The proposed mechanism is simulated using finite 
element software to validate the feasibility of the core concept and to evaluate buckling as a reliable 
mechanism in kinetic façade control modules. 

1. Introduction 

Over the past decades, both governmental and public sectors are demanding increased performance, 
improved efficiency and reduced energy consumptions of buildings. These demands have been intensified 
because of environmental and global warming concerns, and engineers are exploring innovative solutions 
that satisfy the growing economic and sustainable design requirements. Façades, being the primary 
constituent of building envelopes, are crucial for enhancing energy efficiency and indoor comfort. 
Research is increasingly focused on exploiting simple design measures, including natural ventilation, 
thermal mass and shading, to control the indoor environment and minimise the need for active cooling 
and heating. In recent years, adaptive façades have been pursued as promising solutions for the 
aforementioned needs and are used by industry in the construction sector.  

In existing adaptive façades, a control system transmits signals to façade components to change form 
according to the current climatic conditions. For example, Al-Bahr towers in UAE (Fig. 1) are equipped 
with dynamic solar screens that respond to the sun’s movement and angle, thus reducing the interior heat 
gain by 50%. Although such technologically enabled kinetic façades may substantially improve the energy 
performance of a building, they rely on energy supply, involve high levels of complexity and expenditure, 
and often face maintenance and reliability issues. In recent years, to remedy these shortcomings and in 
contrast to centrally controlled façades, a new strategy is being explored for designing intelligent and 
resilient building envelopes, in which the responsive capacity is built into the structural components. In 
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this approach, the minimal applications of electric motors, complex moving mechanisms and hinges are 
pursued. New strategies such as structural instability and buckling are utilised to enhance/amplify the 
displacements, reduce parts and the required input energy.  

 
(a) 

 
(b) 

 
 

 
(d) 

 
(c) 

 Fig. 1. (a) Al-Bahr towers (b)-(c) Façade of towers with opened and closed shading devices (d) concept 
development (AHR, 2014) 

In conventional design, the buckling of slender structural members is seen as a route toward failure and 
is avoided. As indicated before, a new paradigm is emerging where the mechanical instability of slender 
structural elements is used to achieve novel modes of functionality (Formentini and Lenci, 2018). Buckling 
is characterised by the sudden release of energy and high rate of motion, both perfect attributes for smart 
and responsive façade solutions. The high rate of motion associated with buckling was utilised in designing 
the ribbed kinetic façade system of the Yeosu Expo 2012 Pavilion  (Soma-Architects, 2012) to enable the 
building to react to light and physical building conditions. Buckling is induced by mechanical jacks applying 
compressive loads at the ends of the ribs. More generally, the attributes of buckling provide a new 
framework for designing structural components and materials at multiple scales with switchable 
functionalities, morphogenesis, etc. 

Among the responses associated with structural instability, ‘snapping’ has seen significant research 
interest in recent years as a framework for developing responsive structural mechanisms. In this form of 
elastic instability, a structural member that is buckled and rests in a stable position jumps to another 
equilibrium configuration when the applied actions pass a critical value, see Fig. 2.  This behaviour has 
been utilised to create adaptive morphing trailing edges for wind turbine blades (Lachenal et al., 2013). 
Also, a biomimetic design of a hingeless flapping device using snap buckling proposed by (Lienhard et al., 
2011) was utilised to create shading façade lamellas.  

The snap-through buckling can be harnessed to create bi-stable mechanisms. In applications where a 
binary response is preferred, e.g. close/open, on/off bi-stable mechanisms can be configured to output 
the desired response. They have been researched for the design of nonexplosive release mechanisms in 
deployment systems in space applications (Zirbel et al., 2016). They offer interesting features, including 
motion without friction or bearings, and also better reliability and precision. These features are of great 
interest in kinetic façade applications. Following this line of thought, in this study, a bi-stable shading 
module is proposed for application in building façade structure. The proposed module is an independent 
unit that can be incorporated as windows in building envelopes. Buckled plate elements attached to 
flexible membranes are configured to create a system with open and closed states. Although the input for 
the transition of the system from one state to the other is assumed to be mechanical input from electric 
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motors or human operation, smart materials such as shape memory alloy can be utilised to induce the 
required input.  

In section 2, the concept development from the underlying mechanics to integration in a kinetic facade 
system is presented in detail. In section 3, a numerical simulation using finite element method software, 
Abaqus, is conducted to validate a proof-of-concept prototype. Section 4 concludes the paper and 
identifies new areas that can be explored for future research. 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 2. The classic equilibrium paths for snap-through buckling, (a) initial stable state (A), (b) second stable state (B), 

(c) load-deflection curve 
2. Concept development 

Buckling of slender beam or plate elements have been incorporated as a functional driver in various 
systems. For example, snap-through buckling of beam was utilised as actuator (Han et al., 2004) for large-
displacement optical switching. In this study, we intend to use the buckling of thin plates to create a 
shading module. Two plate elements are combined to create a system with precise open and closed 
configurations. Thin plates with large aspect (length to width) ratios have distinctive first and second mode 
shapes as shown in Fig. 3. The second mode occurs when the lateral deflection of the strip is constrained 
at its midlength. Temporary and retractable point-supports (Hu et al., 2019; Hu et al., 2020) can be used 
at the midlength to guide the strip into the second mode. It is evident that removing the point-supports 
will cause the panel to snap to its first mode. This sudden release of energy and transition from one stable 
state to another can be used to create a bistable shading mechanism. 

 (a) (b) 
Fig. 3. Buckling of slender strips (a) first mode shape (b) second mode shape 

(a) (b) (c) 
Fig. 4. Parallel plates with simply-supported boundary conditions (a) pre-buckling (b) plates buckled in first mode 

(c) plates buckled in second mode.  
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Consider two parallel plates as shown in Fig. 4(a). The plates are free along the longitudinal edges and 
simply-supported on the transverse edges at the ends. With these boundary conditions, the plates will 
buckle into the first mode, as shown in figure Fig. 4(b), when subjected to sufficiently large in-plane 
loads/displacements. It is noted that the plates in Fig. 4(b) can also buckle in the same direction, which 
can be avoided by the introduction of initial curvature. Deploying lateral supports at the midlength of the 
plates will cause the plates to buckle, as presented in Fig. 4(c). In this study, the latter buckled 
configuration is tuned to be the closed configuration, and the state shown in Fig. 4(b) is set to be the open 
state. To propose a proof-of-concept prototype, first, the behaviour of a single plate element is studied 
to determine the practical range of displacements and induced stresses. 
A single plate with length a = 2400 mm, width b = 200 mm and thickness t = 3.5 mm is simply-supported 
along the transverse edges and free along the longitudinal edges, see Fig. 5(a). The plate is discretised 
using S4R shell elements, and assumed to be made of grade G550 steel with Young’s modulus E = 210 GPa 
and Poisson’s ratio ν = 0.3. In lieu of introducing initial curvature of the plate element, a pair of 
concentrated loads (Fi = 35 N), as shown in Fig. 5(b), is applied to invoke deflections compatible with the 
second mode and consequently guide the plate into this mode of buckling. The deflection of the plate at 
midlength is also constrained with a cohesive contact interaction between the plate and the support block 
at the centre. In the next step (Fig. 5 (c)), compressive in-plane displacements u are imposed under which 
the lateral displacements δ will occur. The deformed shape in this stage creates the closed setting. The 
plate will snap to the first buckling mode by releasing the lateral support at mid-length, as presented in 
Fig. 5 (d), experiencing the deflection Δ at midlength. The deformed shape in Fig. 5 (d) is used to generate 
the opening. The model will go back to the state shown in Fig. 5 (c), when subjected to sufficiently large 
torque/rotation (θ) at one (or both) supports, see Fig. 5 (e). In summary, the system will open when the 
constraint at midlength is removed, and revert to the closed configuration when the support is rotated 
past a critical rotation θ.   

 
(a) 

 
(b) 

 
(c) 

     (d)       (e) 
Fig. 5. Single plate model for numerical simulation (a) initial state (b) introduction of initial curvature (c) 

enforcement of in-plane compressive displacements u (d) release of midlength support (e) 

 
(a) 

(b) 

(c) 
Fig. 6. (a) Maximum deflections (δ and Δ) of simulated plates (in mode I and mode II) vs compressive in-plane 

displacement (u) (b) closed configuration, mode II (c) open configuration, mode II 
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A series of finite element analyses are conducted to simulate the process explained in Fig. 5. Because of 
the dynamic nature of the problem, Abaqus explicit is utilised to incorporate the inertia effects and to 
accurately model the experienced snapping from one mode to the other. The objective is to achieve large 
openings (Δ) while the system remains in the elastic range. To this end, the in-plane displacement u is 
varied from 5 mm to 150 mm with 5 mm increments. The results obtained for deflections (Δ) and (δ), (Fig. 
5(c)-(d)) are presented in Fig. 6(a). The FE models are also checked for possible yielding of the plate 
elements. It is observed that for models with compressive displacement (u) larger than 105 mm, yielding 
is initiated in the parts of plates with maximum deflection when the plate is in the second mode, Fig. 6(b). 
To achieve a model which functions in the elastic range and transitions between open (Fig. 6(c)) and closed 
(Fig. 6(b)) states, the maximum compressive displacement is limited to 100 mm. Extracting from Fig. 6(a) 
for this case, an opening of Δ ≈ 400 mm can be achieved. In the next section, a conceptual shading module 
with buckling of plate elements (using the process explained above) is visualised and incorporated in a 
double skin façade.  

3. Module proposal and façade application  
A shading module can be developed using plate elements as presented in Fig. 7. Two plate elements with 
the same dimensions (2400 mm × 200 mm) are placed inside hinged grips and then compressed inwards 
by 100 mm at the ends. Flexible membranes, which provide the shading, are attached to the plates and 
the hosting frame, as shown in Fig. 7.  

 

(a) (b) 
Fig. 7. Conceptualised shading module with buckling as driver (a) front view (b) 3D view 

(a) (b) 
Fig. 8. Proposed concept shading module incorporated into a double skin façade (a) 3D view (b) front view 

The shading membranes are stretched in closed setting and provide an opaque layer within the frame. In 
the closed setting, a deployable component with hooks bonds the two plates at the midlength and 
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constrains their translational movements. It is noted this constraint does not restrict the rotation of the 
plates. A simple design for this component is presented in the following section. To open the module, the 
retractable midlength support is disengaged, causing the plates to buckle in the first mode. In this 
instance, the plates are nudged to buckle in two opposite directions making an oval opening in the centre 
of the module. The module can be closed by rotating the hinges, as explained in Fig. 5(e). A schematic 
integration of the concept modules in a double skin façade is shown in Fig. 8. 

3. Numerical simulation 

In this section, a detailed proof-of-concept numerical simulation is conducted to prove the feasibility of 
the proposed mechanism. The components utilised in the module include (1) double hook tie bar, Fig. 9(a) 
(2) hinge blocks, Fig. 9(b) (3) plates, Fig. 9(c) (4) external frame, Fig. 9(d). These components are assembled 
as shown in Fig. 9(e). In the closed setting, the perforations in the plates will be engaged with the hooks 
to constrain the out-of-plane deflection of the plates at midlength. By rotating the tie bar along its 
longitudinal axis, the edges of the perforations will be released from the hooks, and the plates will snap 
to the first mode of buckling by oval extensions placed on the top and bottom of the tie bar. 
 

 
 

(front) (side) 
 
(a) 
 

 

 
 

 
(top) 

 
 

 
(c)  

(d) 
 

  

 
 

 
(b) 

(e)  
Fig. 9. Components of the proposed model (a) retractable point supports (b) hinge (c) plate with perforations (d) 

external frame (e) half of the assembly and positioning of the components 

In the first step of the analysis, the curvature required to deform in the second mode is introduced by 
enforcing concentrated forces as explained for the plate element in Fig. 5 (b). In this stage, the tie bar 
between the plates is active (Fig. 10(a)) and limits the out-of-plane deflection of the plates.  Fig. 10(b) 
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shows the set-up of the module including induced curvature with a maximum deflection value of 32.4 
mm. In the next step, the four hinges that host transverse edges of the plates are moved by 100 mm 
vertically toward the centre. At the end of this loading, the plates buckle in the second mode and assume 
the configuration presented in Fig. 11(a), which is the closed state for shading. Again, the tie bar is engaged 
and keeps the module in a closed state. To open the module, the bar is rotated counter-clockwise about 
its longitudinal axis (perpendicular to the page), thus releasing the edges of the perforations from the 
hooks and removing the lateral constraints, see Fig. 10(c). Hence, the plates will snap to the first buckling 
mode shape which correspond to the open state, Fig. 11(b).  

 (a) 

 (b) (c) 
Fig. 10. (a) Active tie bar constraining the plates deflections (b) module with induced imperfection compatible with 

mode two (c) the tie bar is rotated, and the constraint on deflections is released. 

 

 
 
 

 
(a) 

 

 
 
 

 
(b) 

Fig. 11. The FE simulation of the module with displacements magnitude contour in (a) closed and (b) open settings 

The response of the module is captured using Abaqus explicit software. The results for the deflection of 
points A and B (Fig. 11) are presented in Fig. 12. As can be seen, the deflection of point B is increased by 
introduction of the horizontal loads. In the loading step, the deflection of point B is increased to 225 mm. 
In these two steps (initial curvature and axial loading), point A remains stationary as its deflection is 
constrained. In the releasing step, when the tie bar is rotated, both points A and B experience a jump in 
their deflections. Because of inertia effects, the plates fluctuate before becoming stationary in the new 
stable position. Point A reaches a deflection of 450 mm, implying the module will have a 900 mm opening 
at the centre.   

Point B 

Point A 
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Fig. 12. Deflection of Points A and B 

4. Conclusions 
In this paper, it is demonstrated that the instability and snap-through buckling of thin plates can be utilised 
as driver for opening and closing shading modules. The system can work with mechanical and electronic 
devices, or alternatively, smart materials such as shape memory alloys can be used for sensing and 
actuation. In the presented numerical simulations, the performance of the system is evaluated and it is 
shown that a shading module with binary (open/close) response can be achieved by configuring the 
snapping between the first and second modes of buckling.   
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Abstract 
As the requirements in construction industry for lower energy consumption are becoming more stringent, 
shape morphing triggered by buckling is targeted for energy-saving structural applications. Among the 
structural forms that are suitable for such applications are thin plates, which are prone to buckling under 
small in-plane strains. Deployable point-supports can be utilised to enhance and guide the buckling 
behaviour of thin plates based structural systems and subsequently to achieve desired morphogenesis. In 
adapting such framework, this study presents novel concepts with application in ventilation control 
modules. In the proposed models, temporary point-restraints are initially deployed to load the plate into 
the post-buckling range of the primary plate element. The ventilation system is activated when the 
temporary point-supports are released, causing the primary plate to buckle into the desired opening form. 
The proposed models are simulated using finite element software to determine the feasibility of the 
proposed idea and determine the effectiveness of buckling as a reliable mechanism in kinetic façade 
control modules. The proposed prototype can be operated using electric and mechanical external motors 
or alternatively smart materials can be used for sensing and actuation as required.  
 
 
1. Introduction   
Energy consumption in buildings has seen great attention because of growing concerns about carbon 
emissions and climate change. New stricter building regulations (ABCB, 2015) and roadmaps (LaFrance, 
2013) are placing increasing demands on the use of highly energy-efficient technologies and equipment, 
as well as modern façade solutions. This demand has made building façades the subject of recent 
experiments and studies on increasingly innovative systems and technologies such as “double-skin” 
façades (DSFs) (Ghaffarianhoseini et al., 2016), in which a second layer is placed in front of a regular 
building façade. The expected attribute among variants of DSFs is controllable ventilation (airflow) 
between the skins of the façade. The air cavity between the layers acts as an insulator against the 
undesired impacts of the outer environment and loss of energy from the building. In addition, DSFs are a 
suitable framework for implementing a solar chimney that utilises solar thermal energy to induce airflow. 
In a conventional solar chimney, the difference between the inside and outside air temperatures causes 
ventilation flow because of buoyancy effect. In comparison with mechanical ventilation systems, the solar 
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chimney offers a sustainable solution as it requires virtually no energy to operate, and has low operation 
costs and zero carbon-dioxide emission (Fig. 1).  

 
Fig. 1. Double skin façade with integrated solar chimney for passive ventilation   

Like other cooling/heating solutions, the solar chimney should be equipped with a control module to 
respond to temperature changes and occupants’ demands. In the closed configuration, the cavity acts as 
thermal insulation (in winter) and in the open setting allows for natural ventilation (in summer).  In recent 
years, smart materials have been used to create moving surfaces that interact visually and physically with 
the external environment. In this type of evolving façade technology, also known as “kinetic façade”, the 
designed systems respond to environmental conditions and perform desired functions that are not 
feasible for static structures (Formentini and Lenci, 2018).  
 
Within this framework, this study is devoted to the presentation and numerical validation of a novel 
concept for use in kinetic façades. The proposed module is a binary system with closed and open 
configurations that can be used to control the airflow in a solar chimney. In this module, the buckling of 
thin panels is the main driver for functionality, and smart materials such as shape memory alloys can be 
used to trigger the instability. Previous contributions to this area of research include works by Coelho and 
Maes (2009), who proposed a shutter model motorised by shape-memory alloys to control ventilation 
and light, and Lignarolo et al. (2011), who developed shape-memory alloy actuated elements to enhance 
the aerodynamic behaviour of high-rise buildings by changing the roughness of the building skin. 
Formentini and Lenci (2018) proposed a panel actuated by SMA for building envelopes to be incorporated 
as ventilation openings. They used SMA wires as low-energy thermal sensors and force-inducing elements 
that cause buckling of the panel, see Fig. 2.  
 

 
(a)  

 
(b)  

 
Fig. 2. The proposed ventilation panel by Formentini and Lenci, 2018 in (a) closed and (b) open positions. NiTi SMA 

wires connected to the plate to stress the plate into the buckled position 
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In this study, we also present a concept for ventilation modules that harnesses buckling to create openings 
for airflow in an integrated solar chimney in DSFs. To create a binary system with only open and closed 
configurations, deployable point-supports are utilised to enhance and guide the buckling behaviour of 
thin plates. The deployable point-restraints are engaged to load the plate into the post-buckling range of 
the primary element, see Fig. 3(a). The module opens the airflow passage when the temporary point-
supports are released, causing the plate to buckle into the desired form, Fig. 3(b). 

 
(a) 

 
(b) 

Fig. 3. Schematic presentation of the proposed module in (a) closed state and (b) open configuration 

2. Buckling-activated ventilation control modules  

Having the basic concept and the general mechanics of the proposed module presented, we seek to 
identify the key questions that are required to be answered for the realisation of the proposed idea. The 
placement of temporary point-supports is an important factor that influences the outcome and the 
module’s response. It is evident that the introduction of point-supports enhances the buckling capacity of 
the panel. The maximum enhancement of the buckling capacity can be expected when the point-supports 
are positioned in optimal locations. This, in turn, means that when the point-supports are released, the 
plate is subjected to higher in-plane stresses and consequently undergoes larger lateral buckling 
displacements. Thus, the first problem to be investigated is the optimal placement of point-supports. This 
research question has been investigated in detail by the authors (Hu et al., 2019; Hu et al., 2020), and a 
brief summary of the methodology and the relevant solutions is presented in the next section.  

2.1 Analytical tools and investigation 

Consider a rectangular plate as shown in Fig. 4(a), with two parallel simply-supported edges of width b, 
and arbitrary support condition along the other edges with length a.  
 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 4. (a) Schematic diagram of a Levy-type plate subjected to biaxial loads (qx and qy) (b) Levy-type plate with 

multiple point-supports, (c) partition line j between adjacent sub-plates i and i+1 
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The governing differential equation for the deflection (w) of such plates can be expressed as (Timoshenko 
and Woinowsky-Krieger, 1959)  

4 4 4 2 2

4 2 2 4 2 2

12 0.x y
w w w w wq q

x x y y D x y
 ∂ ∂ ∂ ∂ ∂

+ + − + = ∂ ∂ ∂ ∂ ∂ ∂ 
   (1) 

In Eq. (1), qx and qy are in-plane compressive stresses in the x and y directions, respectively, and D is the 
plate flexural rigidity. The introduction of point-supports is achieved by using the one dimensional (1-D) 
impulse function approach (IFA) (Bapat and Suryanarayan, 1989; Bapat et al., 1988). In the IFA, the core 
idea is to represent the shear force or bending moment distribution along the longitudinal lines passing 
through point-supports (Fig. 4(b)) using a single Fourier expansion of the impulse function. The externally 
exerted shear and moment contributions at point-supports (if the point is clamped) along the j-th partition 
line can be expressed as Fourier series expansions as follows, 
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where NPj is the number of point-supports located on the j-th partition line, ( ) j
V k

I  and ( ) j
M kI , 

respectively, are the amplitudes of the shear and moment reactions at the point-support ( )j
kp  (kth point 

at the jth partition line), and ( )j
kx Xδ −  is the impulse function. Using the Levy Fourier series expansion 

(Timoshenko and Woinowsky-Krieger, 1959), the generalised solution of Eq. (1) is given in the following 
form: 
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where Am, Bm, Cm, and Dm are constants which are determined using prescribed BCs and m is the term 
number in the series expansion. The constants rm and sm are defined as: 
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   (5)  

Having the general solution, one can obtain the equations for the slope (S), shear force (V) and moment 
(M), viz. 
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Utilising Eqs. (2) and (3) in combination with Eqs. (7) and (8), the total shear V  and moment M  along 
partition line j (y = Y j ) are given as: 
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For all harmonic terms, by enforcing the BCs along the longitudinal edges as well as the continuity and 
restraints at each discrete point-support, a coefficient matrix can be derived. The determinant of the 
coefficient matrix yields the characteristic equation that defines the stability of the plate. By solving the 
characteristic equations buckling solutions are obtained. Hu et al. 2020 presented solutions for the 
optimal positioning of discrete point-supports in Levy-type plates for buckling load maximisation. A 
comprehensive set of plate problems with various aspect ratios, boundary conditions and different 
number of point-supports was considered. Among the considered cases, a few are suitable for 
development as ventilation modules. In this study, we consider the case of plate with SSSF support 
conditions and aspect ratio Φ = 3 with two internal point-supports. The results for the optimised point-
supports locations, P1 and P2, for the considered plate are shown in Fig. 5.  

 
Fig. 5. Optimised point-supports locations of SSSF plates with two point-supports with aspect ratios Φ = 3 

It is noted that placing the point-supports along the line segment shown increases the buckling load factor 
from 0.534 (for the primary plate without intermediate restraints) to 1.402. Based on the analytical 
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studies, a concept model is proposed as a ventilation control module that incorporates two retractable 
point-supports. It is noted that the positioning of the point-supports based on the analytical solutions is a 
starting guess. Accurate possitioning of the retractable point-supports can be addressed in an 
optimisation framework. A series of numerical simulations are conducted to prove the feasibility of the 
concept. The force-inducing mechanism is not discussed but various options including smart materials 
such as SMA wires (Formentini and Lenci, 2018) could be used. 

2.2 Proposed prototype and function process 
A prototype is presented with sufficient details for proof of concept numerical simulations. Cones with 
deep, circular grooves, as shown in Fig. 6(a) are utilised to introduce retractive constraints. The panel is 
perforated as shown in Fig. 6(b) to accommodate the retractive points-supports. The cones are assembled 
into the module as shown in Fig. 6(c). The cones effectively restrain the out-of-plane deflection of the 
panel when the grooves are positioned within the narrow segment of the key-hole shaped perforations. 
This configuration with some approximation simulates a plate with two internal point-supports. The plate 
is compressed along the transverse edges while the cones are engaged with the edges of perforations. 
Because of the discrete restraints, the plate can be loaded beyond the buckling load of the primary panel. 
The passage for the airflow opens when the cones (point-supports) are lowered into the bigger circles of 
the perforations. As the cones slide into the circles, they are no longer in contact with the narrow part of 
the perforations. Consequently, the discrete constraints on the out-of-plane deflection of the panel are 
removed and the plate suddenly buckles. The process of the proposed prototype has been numerically 
simulated using Abaqus finite element software. The detail of the analyses are presented in the following.  
 

 
(a) 

 
 

 

 

 

 
 

(b) 
Fig. 6. Developed prototype (a) cone used to simulate point-supports (b) panel with key-hole shaped perforations 

(c) the initial assembling of the parts 
3. Numerical Simulation 
It is assumed that all components are made of steel with Young’s modulus E = 210 GPa and Poisson’s ratio 
ν = 0.3. Due to the dynamic nature of the problem, i.e. sudden release of the panel upon removal of the 
point-supports, the dynamic explicit method is used to simulate the process. The plate is discretised using 
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S4R shell elements with an average global size (length and width) of 5 mm, and C3D8R 8-node linear brick 
elements are utilised for meshing the solid cones. The plate is simply-supported along the two transverse 
edges loaded in uniform compression and one of the longitudinal edges. The point-supports are 
positioned close to the free edge to control the out-of-plane deflection. First, a buckling analysis is 
conducted to determine the three first modes of the primary plate and their associated buckling load 
factors. The solutions for the buckling analysis are presented in Fig. 7, and as can be seen, the first mode 
provides a suitable pattern for the opening of the ventilation module. Thus, this mode shape is introduced 
as imperfection in the analysis.  This is achieved by enforcing a concentrated force equal to 15 N at point 
A at the centre of the free edge, (Fig. 6 (c)). The results obtained for the deflection of point A are presented 
in Fig. 8. Imposing the point load induces a deflection of 3.24 mm at point A. 

(a) (b) (c) 

Fig. 7. The buckling mode shapes of the primary plate (a) First mode, buckling load 8.87 N/mm (b) Second mode, 
buckling load 22.51 N/mm (c) Third mode, buckling load 24.34N/mm  

 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

Fig. 8. Deflection of point A during operation of the panel (opening)  (1) introduction of imperfection (2) in-plane 
loading (3) release of point-supports (4) buckling of panel (open configuration) 
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After introducing an imperfection as step 1, the panel is subjected to compressive stress along the 
transverse edges. The loads are gradually increased until reaching the intensity of 27 N/mm, Fig. 8(2). It 
can be seen that the deflection of Point A under in-plane loading increases modestly to 4.17 mm. At the 
end of this step the plate is fully loaded and removal of point-supports will cause sudden deflection along 
the free edge. The point-supports are lowered and disengaged in the next step, Fig. 8(3), and therefore 
the buckling of the primary plate under the imposed in-plane loading occurs. Because of inertia effects 
the panel fluctuate around the static configuration (deflection of 61.8 mm) until damping dissipates the 
dynamic energy of the mechanism, Fig. 8(4). 

4. Conclusions  

In this paper, it is shown how buckling of thin panels can be used as a mechanism for opening and closing 
ventilation modules in kinetic facades. The system can work with mechanical and electronic devices, or 
alternatively, smart materials such as shape memory alloy can be used for sensing and actuation. The 
feasibility of the idea is proved by numerical simulation of a prototype. To this end, FE software Abaqus is 
used to model an accurately designed system. The results obtained show that a binary system that snaps 
from closed to open configuration can be achieved, driven by buckling. Due to the dynamic nature of the 
sudden release of the incorporated retractive intermediate restraints, fluctuation is visible in the 
numerical simulation, which may be greatly reduced using simple dampers if required.  
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Evaluation of the post-maximum strength behavior of the lipped-C channel 
column member under compression 

 
Tomoki Kobashi1  Satoshi Kitaoka2 

 
 
Abstract 
The collapse behavior of the axially compressed long column members with the lipped-C cross-section 
was investigated.  Based on the collapse mode from the experiments, the plastic mechanism models 
were proposed. The evaluation results by the proposed method corresponded well with the 
experimental results.  
 
 
1. Introduction 
The lipped-C channel member is widely used for a primary member and a secondary member in Japan. 
Generally, the lipped-C channel is used as an elastic structural component that does not require the 
ductile plastic deformation capacity. However, due to the recent earthquake disasters, it was found that 
these secondary members were also seriously damaged by these strong earthquakes (for example, 
Iyama (2018)). Although these damages dose does not cause a collapse of buildings themselves, these 
damages might injure the people inside the buildings and disturb the continuous use of the buildings 
after the natural disasters, which might provide serious economic damage in the disaster area. 
Therefore, in order to prevent the serious collapse behavior of a secondary structural component, 
revealing the load and displacement relationship not only before reaching the maximum strength but 
also after reaching the maximum strength is an important issue.  
 
 As one of the effective methods to evaluate this post-maximum strength behavior of the lipped-C 
channel, we focused on the plastic mechanism analysis. The plastic mechanism analysis is a kind of limit-
analysis based on the upper bound theorem. Many experimental and numerical investigations about the 
lipped-C channel members under compression and/or bending had been carried out by numerous 
researchers (for example, Morino(2003), Kotełko(2004), and Ungureanu(2010, 2016, 2018)), and they 
revealed that the plastic mechanism analysis is an effective method to evaluate the load-deformation 
behavior after reaching the maximum strength. However, the previous researches were mainly focused 
on the collapse behavior of the short columns, and there are no enough experimental investigations 
about the strength deterioration behavior of the lipped-C long column members. 
 
Therefore, in this paper, the investigation about the strength deterioration of the lipped-C long columns 
was conducted. Based on the experimental results, we proposed the plastic mechanism analysis models 

 
1 Researcher, Nippon Steel Corporation, <kobashi.m47.tomoki@jp.nipponsteel.com> 
2 Senior Researcher, Nippon Steel Corporation, <kitaoka.7pn.satoshi@jp.nipponsteel.com> 
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for the local buckling, the distortional buckling, and the flexural buckling and compare the experimental 
results and the plastic mechanism analysis results. 
 
2. Axial Compression Test of Lipped-C Channel Members 
2.1 Outline of Experiment 
Fig.1 shows an example of a test specimen and Fig.2 Shows the outline of the experiment setup. In this 
paper, we investigated the collapse behavior of the axially compressed lipped-C channel members. All 
specimens were wet so that the loading axis passed through the centroid of the test specimen. The knife 
edges were only allowed to rotate in one direction so that the specimens buckled in the weak direction. 
 
Table.1 and Table.2 shows the coupon test results of the steel material and the list of the test 
specimens. In this paper, a total of ten specimens with six different sectional shapes were tested. The 
variables are the member length L, the plate width of the flange bf, the plate width of the web bw, the 
plate width of the lip bl, and the plate thickness t. The local buckling strength (Pcrl) and the distortional 
buckling strength (Pcrd) in Table.1 are the eigenvalue analysis results. The global buckling strength (Pcrg) is 
the flexural buckling strength. In this test, the rotation around the strong axis and the warping at the 
edges of the member are restrained by knife edges. Therefore, we regarded that the global buckling 
strength of the test specimen is equal to the flexural buckling strength of the lipped-C channel member 
around the weak axis. By substituting these elastic buckling strengths to the direct strength method 
(DSM) equations (AISI Specifications (2016)), we obtained the nominal strength in Table.2. 
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Figure 1 Test specimen Figure 2 Set-up of the test specimen 

 
Table.1 Coupon test results of steel materials 

Thickness 
(mm) 

Yield stress 
(N/mm2) 

Tensile strength 
(N/mm2) 

Yield ratio 
(%) 

Elongation 
(%) 

1.12 362 487 74.3 31 
3.14 315 442 71.3 35 
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Table.2 List of the test specimens 

No. 
Section shapes (mm) Elastic buckling strength(kN) 

Nominal strength  
by DSM (kN) 

bw bf bl t L Local Distortional Global Pnl Pnd 

1 89 40 15 1.12 798 35.8 70.8 126.9 42.8 55.9 
2 89 40 15 1.12 1398 35.8 70.8 45.7 31.7 55.9 
3 89 40 15 3.14 798 788.2 645.9 279.5 133.7 173.3 
4 89 40 15 3.14 1398 788.2 645.9 100.6 84.3 173.3 
5 89 65 10 1.12 798 39.8 39.3 355.1 55.2 47.3 
6 89 65 10 3.14 798 821.9 380.0 872.0 196.4 198.1 
7 150 60 20 1.12 1398 19.9 58.1 159.4 44.8 65.7 
8 150 60 20 1.12 1998 19.9 58.1 81.3 36.8 65.7 
9 150 60 20 3.14 1398 433.7 508.5 381.8 207.5 259.3 

10 150 60 20 3.14 1998 433.7 508.5 194.8 154.1 259.3 

 
2.2 Collapse mode of the specimens 
Fig.3 shows examples of the collapse modes, which were obtained from the compression test. In this 
test, three different collapse modes were obtained. The first is the local buckling mode (Fig.3(a)); four 
specimens showed this collapse mode. In this mode, the local deformation was concentrated at the web 
and the flange plates, and no local deformation was observed at the lip plates. The second is the 
distortional buckling mode (Fig.3(b)); five specimens showed this collapse mode. In this mode, the local 
deformation was concentrated at the lip and flange plates, and no local deformation was observed at 
the web plate. The last mode was the global buckling mode (Fig.3(c)); only one specimen showed this 
collapse mode. In this mode, although it seems that the specimen plastically deformed in the 
longitudinal direction at the middle height of the specimen, no noticeable out of plane deformation of 
the plate elements was observed. 
 

   
(a) Local buckling (b) Distortional buckling (c) Global buckling 

Figure 3 Examples of the collapse mode 
 

Table.3 summarizes the experimental results. Pmax is the maximum strength by experiment, and PDSM is 
the nominal strength by DSM (Note that PDSM is the lower value of Pnl and Pnd in Table.2). The DSM mode 
is the buckling mode in which the nominal strength became lower among that calculated by assuming 
local buckling and distortional buckling. We found that, although Pmax corresponded well with PDSM, the 
collapse mode by experiment did not always agree with that obtained from DSM. The current design 
method is aimed at evaluating the maximum strength of the cold-formed steel members and does not 
consider whether it could evaluate the collapse mode precisely. For example, in the case of No.6 in 
Table.2, Pnl and Pnd mostly have the same value and the difference between them does not have a 
significant effect on the evaluation of the maximum strength. Furthermore, the buckling mode was 
seemingly changed along with the increase of the axial deformation, by the effects of the localized 



 4 

deformation and the material yielding. Investigating the method which can predict the collapse mode 
from the member shapes is a focus of future tasks. 
  

Table 3 Comparison between experiment, eigenvalue analysis, and direct strength method 

No. 
Experiment DSM 

Pmax (kN) Collapse mode PDSM (kN) Mode 

1 44.8 Local 42.8 Local 
2 37.5 Distortional 31.7 Local 
3 136.0 Distortional 133.7 Local 
4 76.8 Global 84.3 Local 
5 50.0 Distortional 55.2 Distortional 
6 196.5 Local 196.4 Local  
7 47.5 Local 44.8 Local 
8 40.0 Local 36.8 Local 
9 195.25 Distortional 207.5 Local 

10 135.50 Distortional 154.1 Local 

 
3. Analytical Investigation of Post-Maximum Strength Behavior 
From the experimental results, we found that the specimen concentrated the local deformation at the 
middle height of them. Besides, the specimens showed a horizontal deformation at their middle height 
as shown in Fig.4. Therefore, we assumed that the test specimen behaved like a hinged-member which 
had a plastic hinge at the middle height of it (Fig.4). In this model, the work by the external force must 
be the same as the energy which is dissipated by the local deformation. Therefore, we evaluated the 
dissipated energy of the local deformation by using the plastic mechanism analysis. 

N

d

(a) Before maximum strength (b) After maximum strength

N

L

d

Plastic hinge

 
Figure 4: Assumed collapse mode of the lipped-C column member 

 
3.1 Outline of Plastic Mechanism analysis 
Fig.5 shows an example of the yield line. The work rates iw

 
at the yield line could be obtained as 

follows. Where 1, 2, and t are the normal stress along the yield line, 1  , 2 , and  are the strain 
rates, and iw  is the work rate. Note that,  1  , 2 ,  , and iw  are the values that were partially 
differentiated with the axial deformation d. 
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(a) Yield line on the plate element (b) Stress distribution in the plate thickness direction 

Figure 5 Stress in the plate element 
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( )1 1 2 2iw σ ε σ ε τγ dV= + +
 (1)

 

 By assuming that the steel material behaved as an isotropic material, the stress tensor by in-plane axial 

compression force (=nybt) could be obtained as follows. Where the  is the angles between yield line 
and longitudinal direction as shown in fig.5(a). 
 

Stress tensor by axial force 

2

11 12

2

21 22

cos sin cos

sin cos sin

 − 
=   

−    

y y

y y

σ σ nσ φ nσ φ φ

σ σ nσ φ φ nσ φ  (2) 

 
Fig.5(b) shows an example of the stress distribution in the plate thickness direction at the yield line. 
Because the bending moment was loaded at the yield line, the stress tensor of the compression side and 

the tension side should be different. Therefore, we define bc and bt as a stress in the 22 direction of 
the compression side and the tension side, obtaining the stress tensor as follows: 
 

Compression side 
2

11 12

21 22

cos sin cos

sin cos

 − 
=   

−    

y y

y bc

σ σ nσ φ nσ φ φ

σ σ nσ φ φ σ  (3.1)
 

Tension side 
2

11 12

21 22

cos sin cos

sin cos

 − 
=   

−    

y y

y bt

σ σ nσ φ nσ φ φ

σ σ nσ φ φ σ   (3.2) 

 
When we assumed that the yield criterion of the steel material follows the Tresca yield criterion, the 
yielding of the steel material could be evaluated as a difference between the maximum mean stress and 
the minimum mean stress. Therefore, substituting the Eqs. (3.1) and (3.2) to the Tresca yield criterion, 

we could evaluate bc and bt as follows: 
 

( )2 2 2cos 1 sin 2= + −bc yσ n φ n φ σ  (4) 

( )2 2 2cos 1 sin 2= − −bt yσ n φ n φ σ  (5) 

 
The volume which is plastically deformed at the yield line is defined as a triangle shape as shown in Fig.6 
(Morino (2003)). By considering the equilibrium of the in-plane force (see Eq.(2)),  we could obtain the 
volume of the plastically deformed zone as follows: 

Compression side ( )

( )

2

2 2

cos 2
1

4 1 sin 2

n φltdV
n φ

+
 
 

= − 
−  

 (6.1)
 

Tension side ( )

( )

2

2 2

cos 2
1

4 1 sin 2

−
 
 

= + 
−  

n φltdV
n φ   (6.2) 

Furthermore, as can be seen in Fig.6, we could evaluate the relationship between 2  (strain rates in the 

22 direction) and 
i  (rotation rates at the yield line) as 

2 0.5 i = . Thus, by substituting the Tresca yield 

criterion to the associated flow rule, we could obtain the following equations: 

1

2

1
ε

ε
= −   (7.1) 

2 2 1

2γ τ

ε σ σ
=

−
  (7.2) 
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Thus, substitution Eqs. (6.1), (6.2), (7.1), and (7.2) to Eq. (2), we could obtain the relationship between 

iw and 
i as follows: 

 

( )

( )

( )

2 2

2 22 2

1 cos 4

1 sin 24 1 sin 2

+
=

−−
i

y t
i

σ l n φ
w θ

n φn φ

   (8) 

 
If the plastic deformation was occurred by the in-plane force without any bending moment, we assumed 
that the triangle zone as shown in Fig.7 was deformed plastically (we call this zone as a yield zone in this 
paper). Referring to Morino’s efforts (Morino(2003)), we evaluate the dissipated energy by in-plane 

plastic deformation as follows. Where b is the width of the yield zone and di is the deformation between 
points A and B as shown in Fig.7. 
 

1

2
=di y iw σ tbδ    (9) 

 
3.3 Outline of the analysis models and evaluation results  
Fig.8 shows the outline of the plastic mechanism analysis models which we assumed in this paper. 
Fig.8(a) is the model that assumed the local buckling, Fig.8(b) is the model of the distortional buckling, 
and Fig8(c) is the global buckling. Based on the experimental results, we assumed axisymmetric analysis 
models. In these analyses, we assumed that the steel material shows a rigid-plastic stress-strain 
relationship, and its strength is equal to the yield stress which is obtained from the tensile coupon test 

(see Table.2). Besides, the calculation pitch of the axial deformation d in the analyses is 0.01 mm.  
 
In the case of local buckling, we refer to the plastic mechanism of the stub column compression test 
(Morino(2003)). The model consists of yield lines and yield zones. Based on the collapse modes by 
experiment, we assumed that the hatched yield zone has an equilateral triangle shape and evaluate the 
buckling length as bf tan(π/6). Besides, we assumed that the web plate element and lip element keep the 
parallel position out of the local deformation. By using these assumptions, we could define the 

rotational angle of the yield lines based on the magnitude of the axial deformation d without any 
iterative calculation. 
 
 In the case of the distortional buckling, we assumed that the angle between line AB and line AC is equal 

to /2 and the angle between AC and AD is equal to /3 based on the collapse mode by experiments. By 
assuming these two angles, we could define all yield lines and yield zone based on the section shapes.  
 
In the case of the global buckling, we assumed the plastic mechanism which consists of the yield zones 
as shown in Fig.8(c). The hatched area is the yield zone which we assumed. At the flange plate, we 

assumed that the length between the neutral axis and the lip equal to the bf ( is the constant value 

from 0 to 1), and assumed that two triangle yield zone appeared. Note that, the bf was defined to 
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Figure 6: Section of the yield line Figure 7: Plastically deformed yield zone by in-plane force 
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minimize the strength of the lipped-C channels by an iterative calculation. At the web plate and lip 
plates, we assumed that the rectangular areas were plastically deformed in the longitudinal direction.  
 
Besides, when we use the local buckling model or the distortional buckling model, we should define the 
n (the ratio of the existing stress to the yield stress at the yield line) in Eq.(3). Thus, considering that the 
maximum strength by experiments and the nominal strength by DSM corresponded well, we assumed 
that the n equal to the PDSM/Py (the ratio of nominal strength by DSM to the yield strength). 
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(a) Local buckling (b)  Distortional buckling (c) Global Buckling 

Figure 8 Outline of plastic mechanism analysis models 

 
Fig.9 shows a comparison between experimental results and analysis results. The vertical axis is the 
member strength and the horizontal axis is the deformation in the longitudinal direction. The solid line is 
the experimental results and the broken line is the evaluation result by the proposed plastic mechanism. 
Although some specimens still have room for improvement, the calculation results mostly corresponded 
well with the experimental results.  
 
In the case of the specimens No.1, 2, 7, and 8, the plastic mechanism analysis evaluates the maximum 
strength conservatively, and the analysis results gradually got closer to the experimental results along 
with the increase of the axial deformation. In the case of these four specimens, the elastic local buckling 
strength by eigenvalue analysis was lower than the maximum strength by experiments (see Table.2 and 
Table.3), so that they occurred the post-buckling behavior. The elastic local buckling is the buckling 
mode of the plate elements, therefore it was assumed that the specimen stored the large elastic strain 
energy caused by the elastic local buckling. On the other hand, the plastic mechanism analysis assumed 
the buckling mode that the local deformation has already been concentrated and did not consider the 
effect of the elastic strain energy by the elastic local buckling. Because of this difference, the proposed 
model seemingly provided conservative results around maximum strength. 
 
In the case of the specimen No.6, although the maximum strength by analysis and experiment showed a 
good correspondence, the analysis results underestimated the member strength after reaching 
maximum strength. As shown in Table.2 and Table.3, the elastic buckling strength of the specimen No.6 
is higher than the maximum strength by experiment so that it could be considered that the specimen 
has the high potentiality to resist a local buckling behavior. Even in the experiment, any local 
deformation was not observed when the specimen reaching maximum strength. Therefore, we surmise 
that the specimen occurred the local buckling during the strength deterioration. Because the specimen 
changed its buckling mode after reaching maximum strength, the plastic mechanism model which 
proposed based on the collapse mode after experiment resulting an underestimation. 
 
Where, this paper investigated a relatively small number of the test results (only 10 specimens), so that 
there still exists a possibility that finding the other collapse modes of a lipped-C channel member. 
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Convincing the validity of the proposed analysis method in this paper by numerical and experimental 
investigations of the different section shapes is an issue in the future. 
 

0

30

60

0 5 10
δ (mm)

P
(k

N
)

Experiment
Analysis

 

0

30

60

0 5 10

Experiment
Analysis

δ (mm)

P
(k

N
)

 

0

100

200

0 5 10
δ (mm)

P
(k

N
)

Experiment
Analysis

 

0

100

200

0 5 10

Experiment
Analysis

δ (mm)

P
(k

N
)

 

0

30

60

0 5 10

Experiment
Analysis

δ (mm)

P
(k

N
)

 

(a) No.1  (b) No.2  (c) No.3  (d) No.4  (e) No.5 

0

100

200

0 5 10
δ (mm)

P
(k

N
)

Experiment
Analysis

 

0

30

60

0 5 10
δ (mm)

P
(k

N
)

Experiment
Analysis

 

0

30

60

0 5 10

Experiment
Analysis

δ (mm)

P
(k

N
)

 

0

100

200

0 5 10

Experiment
Analysis

δ (mm)

P
(k

N
)

 

0

100

200

0 5 10
δ (mm)

P
(k

N
)

Experiment
Analysis

 

(f) No.6  (g) No.7  (h) No.8        (i) No.9 (j) No.10 
Figure 9: Comparison between experiment and analysis 

 
4. Conclusions 
The collapse behavior of the axially compressed long columns members with the lipped-C cross-section 
was investigated in this paper. A total of ten specimens with six different cross-sections were tested, and 
the three plastic mechanisms of the long column subject to the axial compression were proposed, based 
on the collapse modes by experiment.  
 
The plastic mechanism analysis results mostly corresponded well with the experimental results, but 
some specimens which showed a post-buckling behavior were evaluated their strength conservatively. 
In the case of these specimens, they gradually changed their buckling mode after reaching the maximum 
strength along with the increase of the axial deformation. This buckling mode change was resulting the 
difference of the mode between the plastic mechanism and the experimental result. Therefore, 
developing a method to clarify the collapse mode after reaching the maximum strength will become an 
issue in the future. 
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Interaction of stiffened and unstiffened element buckling modes in CFS 
plain channel compression members  

 
K. C. Kalam Aswathy1 and M. V. Anil Kumar2 

 
 
Abstract 
Plain channel compression members are composed of stiffened (web) and unstiffened (flanges) plate 
elements. Effective width method (EWM) for the design of cold-formed steel (CFS) compression 
members accounts for unstiffened and stiffened plate elements through plate buckling coefficient, k of 
0.425 and 4.0, respectively in the elastic local buckling stress (fcrl) calculation. The more recent direct 
strength method (DSM) recommends the local buckling strength equations for the design of plain 
channel compression members. A lipped stub channel compression member undergoes interaction of 
local buckling initiated by the stiffened elements and distortional buckling initiated by the partially 
stiffened flange-lip assembly. Based on finite element analysis (FEA) results, it is demonstrated that such 
an interaction between buckling modes initiated by the stiffened web and unstiffened flanges is possible 
in plain channel compression members also. The behavior of plain channels can be represented as an 
interaction of buckling of the unstiffened flange and stiffened web elements, which is equivalent to 
local-distortional interaction in lip stiffened channels. The deformation plots are also provided to 
understand these mode interactions. The present study focuses on stub columns and does not consider 
the interaction of global buckling mode. 
 
 
1. Introduction 
CFS members are manufactured by press-breaking or cold-rolling thin steel sheets to the required cross-
sectional shapes at room temperature. Plate elements in CFS sections having one and both the 
longitudinal edges supported are classified as unstiffened and stiffened elements, respectively (Fig. 1a). 
The edge stiffened flanges are classified as stiffened or partially stiffened depending on the rigidity of 
the edge stiffener (Fig. 1b).  Stub CFS lip stiffened channel compression members may undergo failure 
modes such as yielding of the material, local buckling of the plate elements, distortional buckling of the 
cross-section in addition to interaction between these modes as shown in  Fig. 1c. The out-of-plane 
deformation of the plate elements due to the large plate width to thickness ratio (b/t or h/t) with no 
translation of plate juncture is classified as local buckling. Buckling mode involving the rotation of the 
flange-lip assembly about the flange-web juncture is classified as distortional buckling which occurs due 
to insufficient rigidity of the edge stiffener to restrain the movement of the flange-lip juncture (Fig. 1c). 
The results presented in this study are on plain channel compression members which may be considered 
as a limiting case of lip-stiffened channels when lip depth (d) tends to zero. 
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c) Local and distortional modes of buckling 

 
Figure 1: Types of plate elements and buckling modes in CFS sections 

 

The two commonly used design methods for CFS plain channel compression members are the effective 
width method (EWM) and direct strength method (DSM) [AISI 2016; AS/NZS 2018]. EWM accounts for 
the stiffened and unstiffened elements using plate buckling coefficients, k = 4.0 and 0.425, respectively 
in the elastic local buckling stress, fcrl calculation (Eq. 1). The normalized ultimate strength (Pul/Py) of the 
section is the summation of Pul/Py of individual plate elements of the cross-section which may be 
computed using Eq. 2 where λl = √(fy/fcrl), is the nondimensional slenderness of the individual plate 
elements. DSM has semi-empirical equations to compute the strength of the member corresponding to 
different buckling modes based on the corresponding elastic buckling stresses or non dimensional 
slenderness values of the whole member. Kumar and Kalyanaraman (2010) indicated that DSM local 
buckling (referred to as DSM-LB here after) strength equation (Eq. 3) can be used for plain channel 
compression members. NAS (2016) and AS/NZS (2018) recommends the DSM-LB equation for the 
calculation of strength of plain channel compression members. 
 

 
 

 

c) Local and distortional 
buckling modes 
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In DSM, although the distortional buckling equations are also recommended for the design of lipped 
channels (Fig. 1b) with partially stiffened flanges (small values of d), the plain channels which can be 
considered as limiting case of lipped channel having d = 0 (Fig. 1a) are designed  using only local buckling 
equations. Therefore there is some inconsistency in the current specifications (Schafer and Adany 2005; 
Bambach 2009). Aswathy and Kumar (2020), demonstrated that both elastic buckling stress and ultimate 
strength of unstiffened plates can be accurately represented using distortional buckling equations. The 
modified DSM equation (denoted as MDSM-DB) proposed by Kumar and Kalyanaraman (2014) (Eq. 4) 
based on test and FEA results of sections that are prone to pure distortional buckling (i.e., no local or 
global buckling) can be extended for the calculation of unstiffened elements also. Here λd [= √(fy/fcrd)] is 
the distortional buckling slenderness which is a function of the elastic distortional buckling stress, fcrd.  
Hence the work presented in the paper is an attempt to represent the behavior of stub plain channel 
compression member as local-distortional interaction and extend the interaction equation (IE) 
developed for lipped channels to plain channels also. 
 

 
 
Kumar and Kalyanaraman (2018) had proposed an interaction equation (Eq. 5) which can account for all 
the buckling mode interactions. Here, Pul/Py, Pud/Py and Pue/Py are the normalized ultimate strengths in 
local, distortional and global modes of buckling, respectively. The local buckling strength is calculated 
using Eq. 6 (Kumar and Kalyanaraman 2012), which is a function of web height to flange width ratio, h/b 
in addition to nondimensional local buckling slenderness, λl. The effect of h/b ratio is accounted for 
using α1 and β and Pul,max/Py represents the upper bound of this equation. The distortional buckling 
strength (Pud/Py) is computed using Eq. 4. 

 
 
The elastic buckling and ultimate strength behavior of stiffened and unstiffened elements can be 
accurately represented using local buckling equations (Bambach 2009) and distortional buckling 
equations (Aswathy and Kumar, 2020), respectively. This work aims at understanding the interaction of 
buckling modes initiated by stiffened and unstiffened elements in plain channels which may lead to the 
plain channel behavior as a case equivalent to interaction of local and distortional buckling modes in 
lipped channels. Finite element analysis (FEA) is used to understand the behavior of plain channels and 
understand the influence of the mode interactions on the ultimate strength.  
 
2. Finite Element Modeling 
The plain channel members with fixed end boundary conditions were modeled in finite element 
package, ABAQUS using four noded shell elements with reduced integration (S4R) through center line of 
the plate elements. The load and boundary conditions were applied at the centroid of the cross-section 
which was connected to the nodes along the end cross-section using stiff beam elements. Initially, an 
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eigenvalue buckling analysis was done to get the elastic buckling loads and corresponding mode shapes. 
Non linear analysis using Newton Raphson iteration scheme was performed considering geometric and 
material non linearity. Mode shapes from eigenvalue analysis was used to seed geometric imperfections 
using appropriate scaling factors. 
 
2.1 Validation of FE Model 
The finite element (FE) model was validated by simulating a few test results available in literature 
[Young and Rasmussen (1998) and Mulligan and Pekoz (1987)]. The dimensions of the specimens 
modeled (b, h, t as shown in Fig. 1) and yield stress (fy) are given in Table 1. The ratio of the ultimate 
loads from test to that from FEA (Pu-test/Pu-FEA) are also presented in Table-1. The mean, μ and standard 

deviations,   of Pu-test/Pu-FEA indicate the accuracy of the FE model.  
  
 

Table 1: Comparison of FEA and test results 

Specimen b h t L fy λ Pu-test Pu-FEA Pu-test/Pu-FEA 
 (mm) (mm) (mm) (mm) (MPa)  (kN) (kN) (kN) 

SC 60x30a 41.48 78.38 1.219 253.49 226 1.30 32.93 31.19 1.06 
SC 180x60a 76.30 221.28 1.219 634.49 226 2.99 37.83 36.77  1.03 
P36F1000b 35.53 95.43 1.48 1000.2 550 1.73 59.00 64.72 0.91 
P36F2500b 35.64 95.83 1.48 2499.4 550 1.86 32.80 34.39 0.95 

       Mean, µ  0.99 
       Standard deviation, σ 0.07 

a – Young and Rasmussen (1998); b – Mulligan and Pekoz (1987) 

 
 
3. Interaction of Buckling Modes in Plain Channels 
The displacement plots from FEA are used in this section to demonstrate that the buckling of plain 
channels may be initiated by buckling of either the unstiffened flanges or the stiffened web. Thus the 
behavior of these members may be considered as a combination of the stiffened and unstiffened 
element buckling modes. This section aims at understanding the buckling mode interactions in plain 
channel compression members and its effect on the ultimate strength.   
 
3.1 Mode interactions 
To identify whether there is interaction between buckling modes initiated by stiffened and unstiffened 
elements in plain channels, the out-of-plane deformation of the web along the length is plotted using 
the results obtained from ABAQUS at load step corresponding to ultimate load. The plain channel 
specimens with h= 100mm, b= 100mm, L= 250mm and fy= 250MPa are used for this plot. Figure 2a 
presents the out-of-plane deformation normalized with respect to the maximum deformation (U/Umax) 
of the web. When the buckling is initiated by the web (stiffened element), the buckling mode 
corresponds to multiple half waves of wavelength approximately equal to the width of the web plate 
and is denoted as stiffened element mode in Fig. 2a. Similarly, when it is initiated by the flanges 
(unstiffened elements), the buckle half waves are much longer and denoted as unstiffened element 
mode Fig. 2a.  
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Figure 2: Out-of-plane deformation of web (a) normalized displacement plot; displacement  contours of web 

when: (b) web does not buckle and (c) web buckles 

 
 
Along with the normalized out of plane deformation (U/Umax) in the web plate corresponding to 
stiffened (local) and unstiffened (distortional) buckling modes, web deformation in load step 
corresponding to the ultimate load from FEA model of two stub plain channel members are also plotted 
in Fig. 2. The h/t ratios of the web of these two specimens are chosen such that in one case the web 
buckles [h/t > 1.901√(E/fy); 79.1 > 55.1] along with the flange and in the other case it does not [h/t < 
1.901√(E/fy); 31.5 < 55.1]. When the web does not buckle, the deformation plot corresponds to the 
unstiffened element mode. When the web buckles, it is observed that the deformation plot is a 
combination of the stiffened and unstiffened modes (Fig. 2a). The corresponding contour plots from 
ABAQUS for these cases are included in Fig. 2b and 2c, respectively. This confirms that there can be a 
combination of stiffened and unstiffened modes of buckling in plain channels which is equivalent to a 
local distortional interaction phenomena in lipped channels.  
 
 
3.2 Ultimate strength 
To understand the influence of the interaction of buckling modes on the ultimate strength, plain 
channels with a constant non dimensional slenderness, λ [=√(fy/fcr); where fcr is the critical elastic 
buckling stress obtained from eigenvalue analysis] and varying h/b ratios were analyzed to determine 
the ultimate load. Stub plain channels having b= 100mm, L= 250mm, and h/b varying from 0.50 to 3.0 
were modeled. The constant λ value was achieved by adjusting fy and t. The ultimate strength 
normalized with yield load (Pu/Py) obtained from FEA and the theoretical predictions using EWM, DSM 
and interaction equation (IE) (Eqs. 2, 3 and 5 represents as EWM, DSM-LB and IE, respectively) are also 
plotted in Fig. 3. In IE Pud/Py and Pul/Py are computed using Eq. 4 and 6 respectively. In this work Pue/Py 

=1, as stub members are used. 
 
 

(b) (c) 
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It is observed that there is a decrease in ultimate strength up to 20.5 % with increase in h/b ratio due to 
interaction of stiffened and unstiffened buckling modes compared to the cases where there is no 
interaction. The DSM-LB equation is found to give comparable predictions of the ultimate strength 
whereas EWM gives conservative predictions. But since both the methods does not account for 
interaction of buckling modes, the variation of strength with respect to h/b is not accurately 
represented. The buckling interaction equation (IE) can trace this trend for plain channel compression 
members and shows slightly better accuracy. 
 
 

 
Figure 3: FEA results for plain channels a) λ = 2.0; b) λ = 3.0 

 

The strength predictions using interaction equation (Eq. 5; denoted as IE), EWM (Eq. 2)and DSM-LB (Eq. 
3) against 13 test results from literature [Young and Rasmussen (1998); Mulligan and Pekoz (1987) and 
Talja (1990)] and 26 FEA results generated as part of this work are plotted in Fig. 4. The statistics of the 
ratio of the ultimate strength from FEA or test and theoretical predictions (Pu-FEA,Test/Pu-Theory) are also 
given in Table 2. The statistics of Pu-FEA,Test/Pu-Theory indicates that both IE and DSM-LB methods give 
accurate strength predictions for plain channel compression members. There is a slight improvement in 
standard deviation when the ultimate strength is calculated using IE. Thus indicates that plain channels 
can also accurately be represented as a case of local distortional interaction phenomena and existing 
interaction equations can be extended for plain channel compression members also.  
 

 
Figure 4: Pu /Py-Theory vs. Pu /Py-FEA,Test 
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Table 2: Statistics of Pu-FEA,Test/Pu-Theory 

Statistical descriptors  Pu-Theory 

 DSM-LB EWM IE 

Number, n 39 39 39 

Mean, µ 0.98 1.33 1.02 

Standard deviation, σ 0.083 0.147 0.076 

Maximum 1.11 1.59 1.12 

Minimum 0.81 1.01 0.79 

 
 
4. Conclusions 
From the comparison of deformation plots obtained from FEA, it is concluded that there is an 
interaction between the stiffened and unstiffened element buckling modes in plain channel 
compression members, which is equivalent to local-distortional buckling interaction in lip stiffened 
channels. Even though not very significant in magnitude, the interaction of buckling modes may lead to 
reduction up to 20% in ultimate strength compared to the specimens where interaction is not present. 
Hence the interaction equation (Eq. 5) which was originally developed for the lipped channels 
considering the local and distortional buckling strengths are found to be appropriate for the strength of 
plain channels also. The current DSM–LB (Eq. 3) equation is also found to give comparable strength 
prediction of these sections. This work may lead to unifying current design procedure irrespective of the 
type of plate elements (stiffened, partially stiffened or unstiffened) in CFS compression members. 
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Abstract

The Koiter method is a reduction technique based on a multi-modal quadratic asymptotic expansion of

the finite element model for recovering the equilibrium path of an elastic structure prone to buckling.

Its main feature is the possibility of performing an inexpensive sensitivity analysis to geometrical imper-

fections by including the effects of the deviations in the reduced model of the perfect structure. The

method is so efficient that can be used for optimal design of slender structures, where it provides the

collapse load associated to each set of design parameters taking into account the nonlinear behaviour

and the worst-shape imperfection at a computational cost similar to a linearised buckling analysis.

1 Introduction

Thin-walled beams and shells are commonly used as primary components in structure engineering, due

to their high specific strength and stiffness, which allow weight and material economy. Their load-

carrying capabilities are often determined by buckling, which often occurs for loads much lower than

the failure loads of materials [1]. The path-following strategy is the standard approach employed to

analyze the nonlinear elastic behavior of this kind of structure. Once the continuum problem has been

discretized using the finite elementmethod, the equilibrium path of the structure is traced step-by-step,

solving a nonlinear system of equations, where the unknowns are the FE degrees of freedom and the

load factor. As a consequence of modal buckling interaction, shell-like structures may exhibit a very

unstable post-buckling behavior and may be highly sensitive to initial imperfections, especially to geo-

metrical imperfections [2, 3]. In light of this an imperfection sensitivity analysis becomes mandatory. It

consists in seeking the so-called worst (detrimental) imperfection cases [4, 5], which are the shapes of

the geometrical imperfections associated with the minimum limit load (safety factor). The Monte Carlo

simulation generally adopted to this end may require thousands of equilibrium path evaluations. The

use of composite structures, which require a layup optimization, further complicates the design pro-

cess. Standard path-following approaches, aimed at recovering the equilibrium path for a single loading

case and assigned imperfections, are not suitable for this purpose because of the high computational

burden of the single run, and are unusable if no information about theworst imperfection shapes is avail-

able. The Koitermethod represents a valid alternative for analyzing and designing thin-walled structures

prone to buckling [6, 7, 8, 9, 10, 11, 12]. It recovers the equilibrium path of an elastic structure using a re-

ducedmodel, inwhich the FEmodel is replaced by its second order asymptotic expansion using the initial

path tangent, the first significant m buckling modes and the corresponding second order modes, named

quadratic correctives. In this way, once the reduced model is built, the equilibrium path of the structure

can be obtained by solving the nonlinear reduced system of m equations in m+1 unknowns, which rep-

resent the modal amplitudes and the load factor. The coefficients of the reduced system are evaluated
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using strain energy variations up to the 4rd order. Shell structures can require a very large number of FE

DOFs to avoid significant discretization errors, while m is usually at most a few tens. Clearly the conve-

nience of the method with respect to the standard path-following strategy is evident. However, its most

attractive feature is the possibility of efficiently performing sensitivity analysis by including a-posteriori

the effects of the imperfections in the reduced nonlinear equations of the reduced model. Neverthe-

less, the state-of-the-art a-posteriori account of geometrical imperfections is based on the hypothesis of

linear pre-critical behaviors and small imperfection amplitudes, that leads to additional terms in the re-

duced systemwhich are just linear in the load factor. As a consequence, inaccuracies occur even for small

pre-critical non-linearities and significant imperfection amplitudes, considerably limiting the application

of themethod. One of the goal of this work is to overcome these inaccuracies with a new accurate treat-

ment of the geometrical imperfections. The asymptotic expansion of the perfect structure is corrected

by adding a series of newmodes, generated by the imperfection. In this way amore accurate formula for

the additional imperfection terms in the reduced system is derived, which coherently takes into account

the effects of the geometrical imperfection up to the 2nd order, without losing the advantages of the

a-posteriori account [13]. In this work, the initial full model is built by a solid-shell discretization of the

structure, with no limitation on geometry and boundary conditions. Linear locking free finite elements

are firstly considered. Moreover, an isogeometric discretemodel [14] is proposed, exploiting the NURBS

interpolation functions to describe accurately the geometry and the high continuity typical of the dis-

placement field in buckling problems and to directly link the CAD model to the structural one. A linear

interpolation is then adopted through the thickness together with a modified generalized constitutive

matrix, which allows us to easily eliminate thickness locking and model multi-layered plates and shells.

Reduced integration schemes, which take into account the continuity of the shape functions, are used

to avoid interpolation locking and make the integration faster. A Mixed Integration Point strategy makes

it possible to transform the displacement model into amixed (stress-displacement) one, required by the

Koiter method to obtain accurate predictions, without introducing stress interpolation functions. The

result is an efficient numerical tool for buckling and initial post-buckling analysis of composite shells,

characterized by a low number of DOFs and integration points and by a simple and quick construction

of the reduced model.

A large number of numerical tests, regarding non-linear buckling problems, modal interaction, unsta-

ble post-critical and imperfection sensitive structures, are presented in order to validate three different

points: 1) the accuracy of reduced model compared to a path-following analysis with the full discrete

model, 2) the accuracy of the new formula proposed to include the effects of imperfections directly in

the reduced model of the perfect structure and 3) the low number of variables needed by the NURBS-

based solid-shell discrete model used for modeling the structure and evaluating the ingredients of the

reduced model.

Finally, case studies are also reported to show how the efficiency of the method makes it suitable for

structural design and optimization, where the reduced model is used for a quick evaluation of the struc-

tural response [15].

2 Koiter method

An imperfection sensitivity analysis based on the Koitermethod [13] is presented for detecting theworst-

shape imperfection. The starting point is a solid-shell FE model [16, 17, 18]. The equilibrium equations,

once the structure is discretized using the FE method, can be written as

r[λ,u] = s[u]− λp̂ = 0 (1)

where r is the residual vector, s is the internal force vector, p̂ is the reference load vector, u are the FE

variables and λ is the load factor. Equation (1) defines a curve in the spaceu−λ, that is the equilibrium
pathof the structure. This nonlinear system,whose size is definedby thenumber of FE variables required

to approximate the continuumproblem, is usually solved bymeans of standard Riks arc-length strategies

[19]. The Koiter method described in [17] represents an effective alternative because, using a ROM,

provides an approximated solution of (1) by means of a reduced system of equations. The steps of
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the Koiter method are briefly recalled. It uses a nonlinear Cauchy continuum based on a Green strain

measure and a hybrid (stress-displacement) solid-shell FEmodel. In thisway the strain energy has a cubic

polynomial dependence only from the configuration variables. The algorithm starts with the so-called

perfect structure analysis, to be performed once and for all for assigned material data, which consists in

the construction of a ROM and the corresponding reduced nonlinear equations defining the equilibrium

path of the structure with no imperfections. The geometrical imperfections are then included directly

in the reduced equations of the perfect structure by simply changing some terms, allowing an efficient

sensitivity analysis.

2.1 Perfect structure analysis

The construction of the ROM of the perfect structure consists of the following steps.

1. The initial path tangent û is evaluated by solving the linear system

K0û = p̂ (2a)

whereK0 ≡ K[0] is the tangent matrix evaluated at the rest configuration.

2. A restricted number m of linearised buckling modes and loads can be obtained by the following

eigenvalue problem

K[λ]v̇ ≡ (K0 + λK1[û])v̇ = 0 (2b)

whereK1[û] is the geometric matrix.

3. The m × (m + 1)/2 quadratic correctives wij , ˆ̂w ∈ W are obtained, adopting a Lagrangian

multiplier approach, by the solution of the linear systems (i = 1 . . .m, j = i . . .m){
Kbwij + pij = 0

wT
ijK1[û]v̇k = 0, k = 1 . . .m

{
Kb

ˆ̂w + p00 = 0
ˆ̂wTK1[û]û = 0.

(2c)

whereKb = K[λb], λb being a representative value of the buckling loads cluster, usually chosen

as the first linearised buckling load, and

pij = K1[v̇i]v̇i, p00 = K1[û]û.

The solution of Eq.(2c) can be obtained adopting the iterative scheme proposed in [17] which uses

the already decomposed matrixK0.

4. The ROM of the perfect structure then assumes the following form

ud[λ, ξi] = λû+
∑
i

ξiv̇i +
1

2

∑
ij

ξiξjẅij +
1

2
λ2 ˆ̂w (2d)

where ξi are the modal amplitudes.

5. The reduced system of equations can now be obtained projecting the equations r[λ,ud] = 0 in

directions v̇i, i = 1..m, and maintaining the terms up to the 3rd order in ξ. It can be written as

rk[λ, ξi] ≡µk[λ] + (λk − λ)ξk −
1

2
λ2

m∑
i=1

ξiCik +
1

2

m∑
i,j=1

ξiξjAijk

+
1

6

m∑
i,j,h=1

ξiξjξhBijhk = 0, k = 1 · · ·m
(2e)

where the coefficientsAijk, Cik and Bijhk are scalar quantities evaluated as the sum of element

contributions and their expression is reported in [17]. Eqs.(2e) are an algebraic nonlinear system

of m equations in the m + 1 variables λ, ξ1 · · · ξm that, due to the small size of the system, can

be efficiently solved using specialized variants of the arc–length scheme.
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Once Eq. (2e) is solved, the equilibrium path in terms of FE variables can be recovered substituting

λ, ξ1 · · · ξm in Eq. (2d).

2.2 A posteriori account of geometrical imperfections

Geometrical imperfections can easily be included in the analysis. They are expressed by an initial dis-

placement ũ, assumed to be a linear combination of known shapes ūi,

ũ =
n∑

i=1

ξ̃iūi. (3)

In this work, the imperfection shapes ūi are chosen as the displacement part of the buckling modes.

The method allows to take account of imperfections in the final stage by simply adding some additional

imperfection terms µ̃k to Eq.(2e) that becomes

rk + µ̃k = 0. (4)

Over the years, two different approaches have been developed. The first and more simple one [17],

modifies the ROMby simply adding the imperfection vector ũ to the ROMof perfect structure in Eq.(2d)

ud[λ, ξi] = ũ+ λû+ v[ξi] +w[ξi, λ]. (5)

This approach, labelled Klin, proves to be extremely efficient but accurate only for small imperfection

amplitudes and almost linear pre-critical behaviour. A second more accurate strategy, named Kquad,

has been recently proposed in [13] and updates the ROM as

ud[λ, ξi, ξ̃i] = ũ+ λ(û+ ˜̂w) +
∑
i

ξi(v̇i + ˙̃wi) +
1

2

∑
ij

ξiξjẅij +
1

2
λ2 ˆ̂w. (6)

considering new corrective modes generated by the imperfection. The projection of the FE equations

(1) in directions v̇i, i = 1..m using the updated ROMs furnishes the imperfection effects on the ROM of

the perfect structure in terms of the additional coefficients µ̃k in Eq. (4).

2.3 A Monte Carlo imperfection sensitivity analysis

The geometrical imperfections are expressed as in Eq.(3) where ξ̃i are uniformly random generated

numbers that set the maximum imperfection shape to a fixed value

max |ũ| = ũmax. (7)

In this way it is possible to obtain a statistical sample of imperfections and to draw, for each of them, the

equilibrium path. As is well known, we can have a stable post-critical behaviour, usually characterised

by a reduction in the stiffness, or an unstable post-critical path with limit point. The collapse is reached

because the applied load exceeds the limit load or because the stiffness reduction leads to deformations

which compromise the usability. This means that the collapse load associated to ũ can be defined as

the minimum between the limit load λlim, if it exists, and the load λ̄ related to a fixed displacement of

a control point

λc = min
ũ

{
λlim(ũ), λ̄(ũ)

}
.

3 Optimal design of a stiffened panel

This section deals with the optimal design of imperfection sensitive shells. Althoughwe focus on seeking

optimum layups for a fixed structural geometry, the procedure is general and can be easily adapted to

4



1000 mm
x, u

z, w

y, v

B

A

v=0

v=0

v=0, w=0

v=0

C (u=0, v=0)

mesh grid

Figure 1: Geometry and boundary conditions.

geometry optimisation. In particular, the optimisation problem consists in searching for the solution

which maximizes the collapse load λc, as defined in 2.3, that is

maximize
ϑ

λc(ϑ)

subject to ϑi ∈ {0◦, 18◦, . . . , 162◦, 180◦}

where ϑi is the fiber orientation of the ith layer and ϑ is the vector collecting all ϑi. A Monte Carlo

method with zooming stages is employed to detect the best stacking sequence [15]. The sensitivity

analysis for the detection of the worst imperfection shape, the results provided by the Koiter method

with a-posteriori account of the imperfections (Klin) are compared with the full FE solution (labelled as

Riks) obtained using the standard arc-length method.

3.1 Stiffened panel

The test regards a curved panel with ”T” stiffeners in compression. In Fig.1 an axonometric projection

shows the geometry and the boundary conditions, while geometrical details of a section have been pic-

tured in Fig.2. The v displacement of the lateral faces of the four panels is bounded and the deformation

of only one curved edge is constrained, also along z. In the illustrations, it is possible to see the mesh

grid details for the 3D solid-shell description of the structure. The curved faces and the stiffener ends

are loaded by a uniform line load λ = 1. The same material is employed for the skin and the stiffeners

and it is characterised byE1 = 30.6GPa,E2 = 8.7GPa, ν12 = 0.3,G12 = 3.4GPa,G23 = 2.9GPa,
with respect to the local reference system which has the direction 1 aligned with the global direction

z while the direction 3 is along the normal at the middle plane of the skin. The stiffener lamination is

supposed to be constant and equal to 0◦, while eight layers define the lamination of the skin labelled as

[ϑ1/ . . . /ϑ8] where every ϑi is a multiple of 18◦ and can vary from 0◦ to 180◦. The purpose of the test

is studying the variability of the post-critical behaviour when the lamination changes and seeking the

laminations with the maximum collapse load. The solutions with minimum collapse load are searched

as well, just to identify the range of variability of the structural performances. The collapse load for the

stable configurations is the load producing the deformation limitwA = 4mm. The buckling modes em-

ployed for the ROM of the Koiter analyses correspond to buckling loads which do not exceed 1.5 times

the first one. In the first stage, N1 = 2500 random uniformly generated laminations are analysed and

the n1 = 10 best and the 10 worst laminations (in terms of collapse load), are selected. In the second

stage, for each of these configurations, a furtherN2 = 100 randomly generated laminations are consid-

ered with each layer angle that can vary between −36◦ and 36◦ with an increment of 18◦ with respect

to the likely optimal values identified by the first stage. The curves in Fig.3 plot the collapse load, the

two lowest buckling loads λ1 and λ2 and the ratio between the collapse load and the first eigenvalue as

a function of a lamination index. This is an integer number which is assigned to each lamination after

they are ordered in terms of decreasing collapse load. The laminations with the smallest index have

a stable behaviour and collapse for reaching the deformation limit. The buckling loads in these cases

5



10 mm

30 mm

30 mm
5 mm

5 mm

300 mm

205 mm

R 2000 mm

x, u

y, v

Figure 2: Section geometry and mesh.

0 500 1,000 1,500 2,000 2,500
0

2

4

6

lamination

λc(kN/cm)

λ1(kN/cm)

λ2(kN/cm)

λc/λ1

Figure 3: Collapse load and linearised buckling

loads at stage 1.

0 500 1,000 1,500 2,000
0

2

4

6

lamination

λc(kN/cm)

λ1(kN/cm)

λ2(kN/cm)

λc/λ1

Figure 4: Collapse load and linearised buckling

loads at stage 2.

6



0 1 2 3 4
0

2

4

L1

wA(mm)

λ(kN/cm)

Klin

Riks

0 0.5 1 1.5 2
0

1

2

L20

wA(mm)

λ(kN/cm)

Klin

Riks
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are well separated from each other. The first buckling load is actually quite constant with the lamination

though, when the second one gets closer to it, the collapse load, due tomodal interaction phenomenon,

drastically reduces. This behaviour is significantly more evident in Fig.4 where the results of stage 2 are

reported. The best laminations in terms of collapse load are characterised by an evident distance be-

tween the first and the second linearised buckling load and exhibit a stable behaviour. Conversely, for the

worst laminations, the second eigenvalue is very close to the first one and the modal interaction leads

to a relevant unstable behaviour with an imperfection sensitive limit load. Some equilibrium paths are

presented in Fig.5. The collapse loads predicted by the Koiter method are practically coincident with

those provided by the Riks analysis with the full FE model.

4 Conclusions

A strategy completely based on stochastic simulations for optimising the stacking sequence of slender

composite shells undergoing buckling was presented in this paper. The objective function is the col-

lapse load, evaluated by taking into account the worst shape of the imperfection by means of the Koiter

method.
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Abstract

The paper shows how to make the incremental-iterative solution significantly more efficient and robust

in geometrically non-linear structural problems discretized via displacement-based finite element for-

mulations. The main idea is to relax the constitutive equations at each integration point (IP) during the

iterations. The converged solution remains unchanged while the iteration matrix is computed using in-

dependent IP stresses. This reduces the number of iterations to obtain convergence and allows very

large steps in incremental analyses. The computational cost of each iteration is the same as the original

Newton method. Importantly, the robustness of the iterative process is unaffected by high membrane-

to-flexural stiffness ratios as opposite to the standard Newton method.

1 Introduction

Slender structures are usually characterized by large displacements and rotations but small strains [1].

Many practical problems can be framed in this context. Some examples are metal and composite struc-

tures, often characterized by buckling phenomena and strong imperfection sensitivity [2, 3, 4, 5, 6]. The

standard approach to simulate the behavior of this kind of structures consists of the use of the finite

element (FE) method, in order to transform the continuum problem into a discrete one. The non-linear

discrete equations, completed with an arc-length constraint defining the step size, are solved step-by-

step by using the Newton iterative method, in order to evaluate the equilibrium path of the structure.

Most of the existing FE codes are based on displacement formulations, i.e. the kinematic field is inter-

polated and the discrete kinematic DOFs represent the unknowns of the non-linear equations. Other

kinds of formulations are possible, like for instance the mixed (stress-displacement) one, also known as

hybrid-stress, in which both the stress and the displacement fields are interpolated. When comparing

mixed and displacement finite elementsmany authors [7] observed that themixed ones aremore robust

and allow larger steps in path-following geometrically non-linear analyses. In this paper we will show

that it is possible to use a mixed iterative scheme without introducing a mixed FE interpolation and,

so, a mixed format of the Newton method for geometrically non-linear structural problems discretized

via displacement-based finite elements is presented. The idea consists of the relaxation of the consti-

tutive equations at each integration point. In this way, the stiffness matrix of a displacement-based FE

maintains its original form. The only difference is that the stresses at each integration point, used for

the matrix evaluation, are directly extrapolated and corrected, i.e. used as independent variables. This

leads to a ”better” iteration matrix, which allows a very low number of iterations and very large steps

(increments) in step-by-step analyses. With respect tomixed FEs no stress interpolations are present, so

avoiding any additional cost in the evaluation of the stiffness matrix. Furthermore the final equilibrium

1Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica

Università della Calabria 87036 Rende (Cosenza), Italy



path is the same as the original displacement formulation since the constitutive law is recovered ex-

actly at convergence. The method, that we call MIP (Mixed Integration Point) Newton, converges much

faster than the standard Newton method, as shown by many numerical tests with different structural

models and FEs. The gain in terms of number of iterations required is impressive as well as the very

large steps that the MIP Newton can withstand without loss of convergence. The computational cost of

a MIP iteration is the same as a standard one. Furthermore, the iteration matrix evaluated with the MIP

strategy is so ”good” that the modified version of the method (MIP modified Newton), which computes

and decomposes the iterationmatrix at the first estimate of each equilibrium point, can be conveniently

adopted. From the implementation point of view, a few changes to the standard approaches are re-

quired [8, 9]. Extensions of the method to isogeometric analyses [10, 11, 1] and penalty coupling [12]

are available.

2 GEOMETRICALLY NON-LINEAR ANALYSIS VIA DISPLACEMENT FEM

2.1 The discrete non-linear equations

We consider a slender hyperelastic structure subject to conservative loads p[λ] proportionally increasing
with the amplifier factor λ. The equilibrium is expressed by the virtual work equation

Φ[u]′ δu− λp δu = 0 , u ∈ U , δu ∈ T (1)

whereu ∈ U is the field of configuration variables,Φ[u]denotes the strain energy, T is the tangent space

of U at u and a prime is used to express the Fréchet derivative with respect to u. We assume that U will

be a linear manifold so that its tangent space T will be independent of u. In displacement formulation u
is the displacement field, while when a mixed formulation is adopted u collects both displacement and

stress fields. Eq.(1) can be rewritten, using a FE or an isogeometric discretization u = Nuu as

r[u, λ] ≡ s[u]− λp = 0, with

{
sT δu ≡ Φ′[u]δu

pT δu ≡ p δu
(2)

where r : RN+1 → RN is a non-linear vectorial function of the vector z ≡ {u, λ} ∈ RN+1, collecting

the configuration u ∈ RN and the load multiplier λ ∈ R, s[u] is the internal force vector and p the

reference load vector. Eq.(2) represents a system ofN -equations andN +1 unknowns and its solutions
define the equilibrium paths as curves inRN+1 from a known initial configuration u0, corresponding to

λ = 0. We also define the tangent stiffness matrix as

δuT
2 K[u]δu1 = Φ′′[u]δu1δu2 , ∀ δu1, δu2 (3)

where δui are generic variations of the configuration field u and δui its discrete vectors.

2.2 Path–following analysis

The Riks method completes the equilibrium equations (2) with the additional constraint g[u, λ]−ξ = 0,
which defines a surface in RN+1. Assigning successive values to the control parameter ξ = ξ(k) the
solution of the non-linear system

R[ξ] ≡
[

r[u, λ]
g[u, λ]− ξ

]
= 0 (4)

defines a sequence of points (steps) z(k) ≡ {u(k), λ(k)}belonging to the equilibriumpath. Starting from

a known equilibrium point z0 ≡ z(k), the new one z(k+1) is evaluated correcting a first extrapolation

z1 = {u1, λ1} by a sequence of estimates zj (loops) by a Newton–Raphson iteration{
J̃ż = −Rj

zj+1 = zj + ż
(5a)
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whereRj ≡ R[zj ] and J̃ is the Jacobian of the non-linear system (4) at zj or its suitable estimate. The

simplest choice for g[u, λ] is the linear constraint corresponding to the orthogonal hyperplane

nT
u (u− uj) + nλ (λ− λj) = ∆ξ where

{
nu ≡ M (uj − u(k))

nλ ≡ µ (λj − λ(k))
(5b)

M and µ being some suitable metric factors,∆ξ an assigned increment of ξ and

J̃ ≈
[
∂R[z]

∂z

]
zj

=

[
K̃ −p̂
nT
u nλ

]
(5c)

The solution of Eq.(5) is conveniently performed as followsλ̇ =
nT
u K̃rj

nλ + nT
u K̃p

K̃u̇ = λ̇p− rj
(5d)

2.3 Displacement-based discrete formulation

In displacement-based FE or isogeometric formulations only the displacement field is interpolated in the

domain and, thus,

u[ξ] = Nd[ξ]de (6)

where de are the element discrete DOFs, linked to the global ones d by the relation de = Aed and

ξ are the coordinates used to express the FE interpolation. The dependence on the coordinates will

be omitted in the following in order to simplify the notation. The strain energy can be expressed as a

sum of element contributionsΦ[u] ≡
∑

eΦe[u], where, letting Ve the finite element domain andC the

constitutive matrix,

Φe[u] ≡
∫
Ve

(
1

2
εTCε

)
dVe (7)

and the strains or generalized strainsε = D[u]u, introducing the interpolation in (6), assume the general

form

ε = B[de]de, (8)

with the differential operator D and its discrete counterpart B, in general, non-linear in u and de re-

spectively. The first variation of the strain measure can be written as

δε = Q[de]δde

and, then, the first variation of the strain energy is

Φe[u]
′δu ≡

∫
Ve

(
δεTCε

)
dVe =

∫
Ve

(
δdT

e Q[de]
TCB[de]de

)
dVe = δdT

e se[de] (9)

where se[de] is the element internal force vector. The second variation of the strain energy is

Φ′′
e [u]δuu̇ ≡

∫
Ve

(
δεTCε̇+ δε̇TCε

)
dVe = δdT

e Ke[de]ḋe (10)

with the element tangent stiffness matrix defined as

Ke[de] ≡
∫
Ve

(
Q[de]

TCQ[de] + G[σ[de],de]
)
dVe (11)

and

G[σ[de],de] =
∑
k

σk[de]Ψk[de]de. (12)
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2.3.1 Numerical integration

Quadrature rules are usually employed to perform the integrations:

Φe[de] ≡
n∑
g

(
1

2
εg[de]

TCgεg[de]

)
wg (13)

where subscript g denotes quantities evaluated in the integration point ξg and wg is the corresponding

weight. The internal force vector becomes

se[de] =
n∑
g

(
Qg[de]

TCgεg[de]
)
wg (14)

while the tangent stiffness matrix is

Ke[σg[de],de] =

n∑
g

(
Qg[de]

TCgQg[de] + Gg[σg[de],de]
)
wg (15)

whereKe[de] is written asKe[σg[de],de] as a reminder of the way it is computed.

3 The new iterative scheme with mixed integration points

The fundamental idea of the MIP Newton iterative scheme [8] is to relax the constitutive equations at

the level of each integration point. This is made by writing the strain energy in Eq. (13) in a pseudo

Helling-Reissner form as

Φe[ue] ≡
n∑

g=1

(
σT
g εg[de]−

1

2
σT
g C

−1
g σg

)
wg with ue =

[
σ1 . . . σn de

]T
(16)

in which the stresses at each integration point σg are now independent variables. The first variation of

(16) is

Φ′
eδu =

n∑
g=1

[
δσg

δde

]T [
sgσ
sgd

]
wg (17)

with {
sgσ ≡ εg[de]−C−1σg

sgd ≡ Qg[de]
Tσg

(18)

We have to note that the stationarity of (16) with respect toσg leads to the constitutive equationsσg =
Cgεg[de] and, thus, the stresses satisfy the constitutive lawalong the equilibriumpath exactly. However,

the stresses at the integration points are independent variables and, thus, they are not forced to satisfy

the constitutive law during the iterations but, the constitutive equations are solved together with the

equilibrium equations and are satisfied only when convergence is obtained. The second variation of (16)

is

Φ′′
eδuu̇ =

n∑
g=1

[
δσg

δde

]T [
−C−1

g Qg

QT
g Gg

] [
σ̇g

ḋe

]
wg (19)

where Gg ≡ Ge[σg,de] is the matrix Ge evaluated in the integration point g, that is now a function of

the displacement DOFs and of the independent stressesσg. The linear system in Eq.(5d), at the element

level, becomes
−C−1

1 w1 Q1w1

. . .
...

−C−1
n wn Qnwn

QT
1 w1 . . . QT

nwn
∑n

g Ggwg


j 

σ̇1
...

σ̇n

ḋe

 = (λj + λ̇)


0
...

0

pe

−


s1σw1

...

snσwn∑n
g

(
QT

g σgwg

)

j

(20)
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Newton MIP Newton

Predictor d1 = d(k) +∆d d1 = d(k) +∆d
λ1 = λ(k) +∆λ λ1 = λ(k) +∆λ

σg[d
1] = Cgεg[d

1] σ1
g = σg(k) +∆σg

Iteration matrix K[σg[d
j ],dj ] K[σj

g,d
j ]

Residual vector s[dj ]− λjp s[dj ]− λjp

New estimate dj+1 = dj + ḋ dj+1 = dj + ḋ

λj+1 = λj + λ̇ λj+1 = λj + λ̇
σj+1

g = Cgεg[d
j+1] σj+1

g = σj+1
g + σ̇

Table 1: Schematic description of the principal points of the algorithms.

where the superscript on matrices denotes that they are evaluated during the iterative process in the

current estimate uj
e. By performing a static condensation of the stresses σ̇g, locally defined at the level

of the integration point, we obtain

σ̇g = CgQ
j
gḋe +Cgs

j
gσ = CgQ

j
gḋe +Cgε

j
g − σj

g (21)

and letting rce[d
j
e] = sce[d

j
e]− λjpe

Ke[u
j
e]ḋe = −rce[d

j
e] + λ̇pe (22)

with

Ke[σ
j
g,d

j
e] =

n∑
g=1

(
Qg[d

j
e]
T
CgQg[d

j
e] + Gg[σ

j
g,d

j
e]
)
wg (23)

the condensed tangent stiffness matrix, that has the same form as the classical displacement based one

(15). However, this time it also depends on the independent stresses at the integration points, which

are now directly extrapolated and corrected during the iterations. Conversely, we can note that the

condensed internal forces sce[d
j
e]

sce[d
j
e] =

n∑
g

(
Qj

g
T
Cgε

j
g

)
wg

coincides exactly with the internal forces of the displacement-based formulation in Eq. (14). This itera-

tive scheme is then very close to the standard Newton one for displacement-based discrete models as

it is highlighted in Tab. 1.

The modified Newton method evaluates and decomposes the iteration matrix in the first extrapolation

(predictor) of each step. The stiffness matrix, evaluated using the direct extrapolation of the stresses

from the previous step, is already a good estimation of the secant matrix and, furthermore, theMIP tan-

gentmatrix slightly changes during the iterative process. Thematrix so evaluated in the first prediction is

then suitable for use in all the iterations over the step (MIP modified Newton). The few extra-iterations

are compensated by evaluation and factorization of the iteration matrix just once in each step.

4 A numerical test

A test regarding a thin-walled cantilever beam with U cross section is considered. Geometry, loads

and material properties are reported in Fig.1. The FE mesh consists of 2880 solid-shell FEs [13, 14],

obtained via 32 equal subdivisions on the cross section and 90 subdivisions along the beam axis. An

arc-length technique with adaptive step size is used and the initial load increment is ∆λ0 = 3. Fig.2
depicts the equilibrium path and the deformed configuration at the limit and the final equilibrium point

5



Figure 1: Geometry, loads and material properties.

steps iterations

Newton 82 301

MIP Newton 36 106

MIP M. Newton 55 175

Table 2: Total number of steps and iterations for the equilibrium path evaluation.

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

20

40

60

80

100

120

λ

w
A

A

B

o

o

0 YX

 DISPLACEMENTS 
0.9430.8490.7550.660.5660.3770.2830.1890.0943 0.472

Z

A

Z

1.34 1.680.672 2.02 Y

 DISPLACEMENTS 
0.3360 X2.35 2.69 3.03 3.361.01

B

Figure 2: Cantilever beam: equilibrium path and deformed configuration at the last evaluated equilibrium point
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corresponding to a vertical displacement wA = −1. As for all the other tests, the MIP Newton, in both

the full or themodified version, performs better with respect to the standardmethod as shown in Tab.2.

The full standard Newton requires a total number of iterations 3 times larger than the MIP full Newton

and almost twice the MIP modified Newton.

5 Conclusions

TheMIP iterative strategy, proposed here, consists relaxes the constitutive law at each integration point.

In this way, the stresses at the integration points become independent variables in the iterative process

and, thus, they are directly predicted and corrected. It allows us to solve geometrically non-linear prob-

lems with a very low number of steps and total iterations with respect to the standard Newton method.
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Abstract 
The subject of the research is the analysis of the influence of damping effect on the dynamic response of 
plate. During the tests, the areas of dynamic stability and instability for the plate with and without 
damping will be compared. Besides, the exact analysis of the nature of solution by applying the criteria 
such as phase portraits, Poincaré maps, FFT analysis, the largest Lyapunov exponents will be done.  
 
1. Introduction 
The beginnings of studies concerning the dynamic stability of plate can be found in publications from the 
middle of twentieth century. The first publication regarding dynamic stability of plates was presented by 
Zizicas in 1952 [Zizicas 1965]. In this paper, the theoretical solutions for the joint supported plate with a 
time-dependent load were reported. Subsequent years of research led to the creation of dynamic 
stability criteria, which were divided into: geometric [Cooley 1965], energy [Raftoyiannis 2000] and 
failure [Petry 2000].  
One of the major criterion was a Budiansky-Hutchinson criterion [Hutchinson 1966], which concerned 
the rods and cylindrical shells with an axial load. They analyzed the load in the form of pulse of a finite 
and infinite duration. They proved that the loss of stability of dynamically loaded constructions occurs 
when the small load increments causes the rapid increase of deflection. Budiansky was one of the 
authors of a similar criterion regarding the cylindrical shells with a transverse load - the Budiansky-Roth 
criterion [Budiansky 1962]. This criterion was willingly used in the research of other scientists who were 
involved in the similar topics [Shariyat 2007][Kubiak 2007][Zhang 2004]. 
Another important criterion is the Petry-Fahlbusch criterion [Petry 2000]. They said that the analysis of 
the stress state should determine the dynamic critical load for the construction with a stable post- which 
the destruction of the structure take place. According to Petry-Fahlbusch’s theory, if the condition - a 
reduced stress is smaller or equal to a boundary stress - is fulfilled at any time and at any point of study 
structure then a dynamic response of the construction under the pulse load is dynamically stable.  
The next important criterion is the Volmir criterion [Volmir 1972]. He analyzed the pulses of a finite 
duration: a rectangular pulse and an exponentially decreasing pulse, the pulses of an infinite duration 
and a linearly increasing load. He studied the pulses that caused both compression and shear. Using the 
Bubnov-Galerkin [Michlin1970] and Runge-Kutta [Collatz2012][Fortuna 2005] methods, he said that the 
loss of stability for the pulse load plates occurs when the maximum deflection of the plates are equal to 
their thickness or half thickness. 
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In 1997, Ari-Gur and Simonetta proposed four criteria the loss of stability [Ari-Gur 1997]. They described 
the value of critical load depending on the following parameters: a measured deflection in the middle of 
length and width of the plate, the intensity of load, for the plates fixed at all edges and loaded a pulse of 
half-wave shaped (a pulse of finite duration). The behavior of rod systems by finite element method was 
analyzed in Kleiber, Kotula and Saran’s work [Kleiber 1987]. They formulated the quasi-bifurcation 
criterion of dynamic stability for the construction that are jumping loaded of Heaviside pulse by using 
the properties of a tangent stiffness matrix in the point of bifurcation. According to this criterion, the 
structure loses stability and a deflection begin to grow boundlessly when the determinant of the tangent 
stiffness matrix is equal to zero and the absolute value of the smallest eigenvalue is greater than the 
absolute value of the nearest maximum, which the smallest eigenvalue reaches.  
All the above criteria are widely used in the research of many scientists who deal with the analysis of 
dynamic stability [Hsu 1975][Kowal-Michalska 2010][Kolakowski 2007][Mania 2007][Kubiak 
2010][Kolakowski 2007][Bolotin 1962]. However, the analysis of plate structures applying dynamic 
criteria such as phase portraits, Poincaré maps, FFT analysis, the largest Lyapunov exponents is less used 
[Alijani 2011][Alijani 2011][Yuda 2011][Wang 2010][Yeh 2002][Touati 1995]. Therefore, this paper 
presents the influence of damping effect on the dynamic response of the plate using the above tools. 
 
2. Studied plate 
A square isotropic plate with dimensions b=l=100mm, h=1mm and material constants E=200GPa, ν=0.3 
was analyzed (Fig. 1). The analyzed plate was simply supported on the all edges. The plate has been 
loaded with a dynamic compressive load. The dynamic load means the load that has been introduced 
suddenly and lasts for an infinitely long time. 
 

 
 

Figure 1: Studied plate 

 
2.1 The plate without damping 
Using research done by Volmir [Volmir 1972], the above plate can be described by themfollowing 
equation: 
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After the transformations the test plate without damping can be described using the equation: 
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∗ - medium stress, σt

∗ - stress amplitude, η - parameter, whose value is dependent on the 
boundary conditions. 
Transforming the equation (2) to dimensionless form: 
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time. For the studied plate the values of parameters are: ω0=3014.3 [rad/s], η=0.23 [rad/s2] – the value 
of parameter for the plate joint supported on the all edges, σcr

∗=72.3 [MPa]. For the purpose of the 
further numerical analysis, the equation (3) was described by two first-order differential equations: 
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2.2 The plate with damping 
Introducing a damping into the equation (2) and transforming into a dimensionless form:  
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where: c=2h/ω0 - the dimensionless damping ratio, h=0.02 [Kolakowski 2013], the other parameters are 
the same as for the plate without damping.  
Writing the equation (5) in the form of two first-order differential equations we get: 
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All studies were made for the following initial conditions: x1=0.01, x2=0. 
 

3. Numerical analysis of the study plate 
Figure 2 shows the areas of dynamic stability and instability (the circled areas) for the plate without (a) 
and with (b) damping effect, after earlier presentation of full compliance of the results presented in 
Volmir work and the results obtained with the dynamic tools for the plate without damping effect 
[Borkowski 2017]. Both graphs in k-ψ/2Ω coordinates (ψ=θ/ω0, Ω=Ω0/ω0) by changing the values of 
parameters σ0 and σt were made. Calculations for parameters k and ψ/2Ω changing every 0.01 were 
executed. Figure 2 was performed by using the criteria of phase portraits, Poincaré maps and FFT 
analysis. Analyzing both charts it can be concluded that there are larger areas of dynamic instability for 
the plate without damping as against the plate with damping. 
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Figure 2: The graphs of dynamic stability and instability areas for the study plate without (a) and with (b) damping 

effect 
 

In addition, small dynamic stability areas within the dynamic instability range in both cases were 
observed. For the plate without damping, the dynamic stability area is represented by a quasi-periodic 
solution. In range of dynamic instability, both quasi-periodic as well as chaotic solutions can be 
specified. For the plate with damping in the dynamic stability area, the trajectory is heading to the 
critical point. In range of dynamic instability, the periodic solutions as well as the series of period-
doubling bifurcations, which leads to a chaotic response were obtained. Therefore, for the purpose of 
more detailed analysis and presentation of the above solutions, the criterion of the largest Lyapunov 
exponents was used. Figure 3 shows the areas of chaotic solution (the gray areas) for the plate without 
(a) and with (b) damping. The dashed lines indicates the boundary for the dynamic stability/instability 
areas which corresponds to the circled part in Fig.2. Comparing the two graphs it can be clearly stated 
that the introduction of damping to the analyzed plate results in obtaining much smaller areas of 
dynamic instability with a chaotic solution. Figure 4 presents a magnification of Figs. 3a and 3b. Gray 
dots correspond to specific values and gray lines to ranges for a chaotic solution. In order to present 
solutions more clearly, the three points from Fig. 2 for individual ranges were selected. These points 
represent solutions from the area of dynamic stability - (k=0.50, ψ/2Ω=0.30), from the area of dynamic 
instability with a periodic/quasi-periodic solution - (k=0.25, ψ/2Ω =1.00) and from the area of dynamic 
instability with a chaotic solution - (k=1.50, ψ/2Ω=0.30). Analyzing the obtained results using the criteria 
of phase portraits and Poincare maps, it can be concluded that the loss of dynamic stability is associated 
with a sudden increase of the displacement x1 and velocity x2 values (Figs. 5d, 5f, 5g, 5i) with compared 
to the dynamic stability areas (Figs. 5a, 5c). The loss of stability is related to the displacement of phase 
trajectory into infinity. This is the case when the analysis time corresponds to the period of natural 
vibration of construction. According to the research presented in [34], the loss of stability is related to 
the displacement of phase trajectory into infinity. This is the case when the analysis time corresponds to 
the period of natural vibration of construction. In order to use dynamic tools such as phase portraits or 
Poincaré maps, the presented research concerns the analysis times many times greater than the period 
of natural vibration. For long analysis times, the phase trajectory does not move into infinity. 
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Figure 3: The graphs of areas representing the chaotic solution for the plate without (a) and with (b) damping 

effect 

 
Figure 4: The detailed graphs of areas representing the chaotic solution for the plate without (a) and with (b) 

damping effect 
 

It achieves some limit values of displacement x1 and velocity x2, the value of which depends on the 
parameter k. However, applying the criterion of phase portraits and analyzing the plate for both short 
and long analysis time, the same results were obtained. Applying FFT analysis, it can be concluded that it 
is possible to precisely determine dominant frequencies in the stability range (Fig. 5b). Also in the 
instability range with a quasi-periodic solution, the dominant frequencies can be specified (Fig. 5e). In 
both cases, the appearance of two disproportionate to each other frequencies can be observed. A so-
called two-dimensional torus (2D torus) is created. For both Fig. 5b and Fig. 5e, the values of largest 
Lapunov exponents are approximately equal to zero (λ1=0.000002, λ2=-0.000002 - for the point k=0.50, 
ψ/2Ω=0.30; λ1=0,000004, λ2=-0,000004 - for the point k=0.25, ψ/2Ω=1.00). It should be noted that the 
two zero Lyapunov exponents for the stability area are the result of the absence of damping in the 
system (3). As a consequence, there is no attractor (attractors) to which the trajectory would converge. 
In the instability range with a chaotic solution (Fig. 5h), the frequency spectrum is continuous. It is not 
possible to specify the dominant frequencies. The amplitude of the tested signal increases significantly, 
which is expressed in decibels. The value of the largest Lyapunov exponent is positive (λ1=0,043531, λ2=-
0,043531). 
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Figure 5: The plate without damping effect - the phase portraits (a, d, g), FFT analysis (b, e, h) and Poincaré maps 
(c, f, i) for the areas of dynamic stability (a, b, c), dynamic instability - quasi-periodic solution (d, e, f) and dynamic 

instability - chaotic solution (g, h, i) 
 

Similarly to the plate without damping effect, the loss of stability for the plate with damping is 
associated with a sudden increase of the displacement x1 and velocity x2 values (Figs. 6d, 6f, 6g, 6i) with 
compared to the dynamic stability areas (Fig. 6a). In the stability area - as a result of the introduced 
damping - the trajectory goes to the critical point (Fig. 6a). The Lyapunov exponents values are negative 
(λ1=-0,019993, λ2=-0,020007) and there is no solution in the FFT analysis graphs (Fig. 6b) and Poincare 
maps (Fig. 6c). In the areas of dynamic instability, a periodic solution was obtained (Figs. 6d, 6e, 6f). 
Together with the series of period-doubling bifurcations, it leads to a chaotic solution (Figs. 6g, 6h, 6i). 
The figures 6d, 6e, 6f shows a solution with a period equal to 2. The FFT analysis (Fig. 6e) enables precise 
representation of dominant frequencies. The Lyapunov exponents values are negative (λ1=-0,020000, 
λ2=-0,020000). Similarly to the plate without damping effect, in the areas of dynamic instability with a 
chaotic solution, the frequency spectrum is continuous and it is impossible to distinguish the dominant 
frequencies (Fig. 6h). The amplitude of the signal also increases. The value of the largest Lyapunov 
exponent is positive (λ1=0,043397, λ2=-0,043397). 
 
4. Summary 
The subject of the research was to present the influence of damping effect on the dynamic response for 
the isotropic plate. The areas of dynamic stability and instability for the plate with and without damping 
were compared. Additionally, using the criteria such as phase portraits, Poincaré maps, FFT analysis, the 
largest Lyapunov exponents, the nature of the solution for the analyzed plate was presented. 
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Figure 6: The plate with damping effect - the phase portraits (a, d, g), FFT analysis (b, e, h) and Poincaré maps (c, f, 
i) for the areas of dynamic stability (a, b, c), dynamic instability - periodic solution (d, e, f) and dynamic instability - 

chaotic solution (g, h, i) 

 
After the tests, it can be concluded that the impact of damping causes the changes of instability areas 
for the studied structure. In addition, the introduction of damping to the system results in a significant 
difference in the occurrence of areas in which the solution is chaotic. For the plate without damping 
effect, the quasi-periodic solution in the dynamic stability areas was observed. The occurrence of two 
disproportionate to each other frequencies as well as the formation of 2D torus has been proved. 
Whereas, both the quasi-periodic as well as the chaotic solution in the instability range were specified. 
For the plate with damping effect in the area of dynamic stability the phase trajectory is going to the 
critical point. In range of dynamic instability, the periodic solutions as well as the series of period 
doubling bifurcations which lead to the chaotic response were obtained. In both analyzed cases (for the 
plate without and with damping), the loss of dynamic stability was associated with a significant increase 
of the displacement x1 and velocity x2 values in comparison to the dynamic stability areas { the criteria of 
phase portraits and Poincaré maps. Using the FFT analysis, the loss of dynamic stability results in the 
inability to precisely specify the dominant frequencies in the spectral signal (what is possible in the areas 
of dynamic stability) and a significant increase in their amplitude was found. Implementing the criterion 
of the largest Lyapunov exponents, it is possible to clearly present significant differences between the 
areas with a chaotic solution for the plate without and with damping effect. 
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Abstract 
Buckling of circular rings under external pressure is one of the oldest problems in structural engineering 
and the first solution to it was proposed by Levy in 1884. The basic solution for the Euler-Bernouilli beam 
can be found in the vast majority of textbooks on stability. However, in a world which strongly relies on 
FE commercial packages, one should be always well aware of these fundamentals and in the present 
work some considerations arising from the numerical treatment of the problem by means of FE and 
from the classic analytical solutions of the differential equations are discussed in order point out some 
inconsistencies which may arise the numerical analyses. 
 
 
1. Introduction 
This paper briefly reviews some aspects of the buckling of circular rings and highlights the need for 
engineers using the numerical modelling to be aware of their limitations and to ensure that the 
numerical results are always judged bearing in mind some fundamental analytical solutions. 
 
In fact, one of the present authors has examined to some extent over the years a number of classic 
problems in the stability of thin walled structures in the elastic and in the elastic-plastic range and 
discussed the advantages and drawbacks of analytical and numerical approaches. Problems related to 
modes interaction, material modelling and to imperfection sensitivity have been examined with respect 
to well-known conundrums in the theory of stability and it has been shown that the combination of all 
these aspects is such that any numerical analysis, despite the availability of modern very powerful 
nonlinear FE packages, must be preceded by a careful examination of the particularities of the problem 
at hand (Guarracino, 2019). In fact, a skillful insight into the mechanics of the problem is always vital in 
order to attain a good agreement with experimental results and provide reliable predictions for a large 
number of cases. 
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Here the attention is focused on the simple buckling of circular rings under external pressure, which is 
one of the oldest problems in structural engineering, since its first solution was proposed by Levy in 
1884 (Levy 1884). This solution, which applies to the Euler-Bernouilli model of beam can be found in the 
vast majority of textbooks on stability. However, it is rather surprising that such a solution cannot be 
straightforwardly replicated on the same bases by a simple Eigenvalue Buckling Analysis by one of the 
most known commercially available FE package, i.e. ANSYS Mechanical (ANSYS 2020). Actually, in order 
to obtain numerically the critical load from the classic Levy’s solution one has to make reference to a 
beam modelling which involves the shear deformation, that is the classic Timoshenko–Ehrenfest beam 
theory, thus effectively lowering the stiffness of the ring. 
 
The findings are discussed and compared with the analytical solution provided by Timoshenko 
(Timoshenko and Gere 1961) and Smith and Simitses (Smith and Simitses 1969). 
 
 
2. Some analytical background 
The problem under consideration is the initial buckling of a thin ring of mean radius R under an external 
hydrostatic pressure p, as shown in Fig.1. 

 
Figure 1: A thin ring under external hydrostatic pressure 

 
where t is the ring thickness.  
 
In the framework of a nonlinear, small strain, moderate rotation kinematics and in the hypothesis of 
inextensional deformation, Timoshenko and Gere, moving from the classic result by Levy, provide the 
following expression for the critical pressure: 
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where E is the Young Modulus of the material and I the inertia of the cross section.  
 
However, this solution neglects the effect of transverse shear deformation on the magnitude of the 
critical pressure. While it is expected that this effect will be negligible for thin rings, it might be not for 
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many other cases and Smith and Simitses proposed the following expression for the critical pressure 
accounting for both the effect of extensional and transverse shear deformation: 
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where G is the shear Modulus, A is the area of the cross section and κ  is the Timoshenko shear 
coefficient. 
 
For a steel ring (E=2.1x105MPa, G=8x104MPa and κ =5/6) with a rectangular cross section of 5mm x 
50mm and radius R=250, 375 and 500mm, Eqs. (1-4) provide the results collected in Table 1.  
 
 

Table 1: Critical pressures for a ring of section 5 x 50 mm (analytical) 
R Pcr 

cr
p  (1 /

cr cr
p p− ) 

(mm) (N/mm) (N/mm) (%) 
250 21.000 20.991 0.04 
375 6.2222 6.2211 0.02 
500 2.6250 2.6247 0.01 

 
 
As it can be physically expected, the results for a thin ring as the one taken into consideration, do not 
vary significantly by taking into account the effect of extensional and transverse shear deformation. 
Also, the percent difference decreases with the increase of the radius. 
 
 
3. FE analyses 
Several numerical analyses have been carried out by means of the Finite Element package ANSYS® 
(ANSYS 2019). The model was carefully calibrated and it was found that a mesh of 200 elements was 
sufficient to stabilise the results, as shown in Fig.2. Fig.2 also shows the unit applied pressure. The 
boundary conditions were such as to prevent any rigid motions. 
 
The ring was modelled either by means of BEAM4 3-D 2Nodes elements or BEAM188 – 3-D 2Nodes 
elements. BEAM4 is a uniaxial element with tension, compression, torsion, and bending capabilities. 
Stress stiffening and large deflection capabilities are included. A consistent tangent stiffness matrix 
option is available for use in large deflection (finite rotation) analyses. BEAM4 3-D is apt to represent the 
Euler-Bernouilli beam theory in the simplest possible formulation.  Starting from ANSYS 14.5 it is no 
longer possible to activate BEAM4 3-D via Menu, but it can be used by means of the APDL. 
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Figure 2: Finite Element mesh 

 
According to the ANSYS Theory Manual, BEAM188 is suitable for analyzing slender to moderately 
stubby/thick beam structures. The element is based on Timoshenko beam theory which includes shear-
deformation effects. The element is a linear, quadratic, or cubic two-node beam element in 3-D and has 
six degrees of freedom at each node. These include translations in the x, y, and z directions and 
rotations about the x, y, and z directions. The element is well-suited for linear, large rotation, and/or 
large strain nonlinear applications. The element includes stress stiffness terms in any analysis with large 
deflection and the provided stress-stiffness terms enable the user to analyze flexural, lateral, and 
torsional stability problems, in the case at hand using eigenvalue buckling. 
 
Importantly, since the comparison was meant to be made versus the results from Eq. (2), it is worth 
noticing that BEAM188 is based on a first-order shear-deformation theory, which means that transverse-
shear strain is constant through the cross-section, i.e. cross-sections remain plane and undistorted after 
deformation. 
 
In order to assess further the validity of the results, the critical pressure for the Euler-Bernouilli beam 
theory was calculated first using the BEAM4 3-D 2Nodes elements and successively the BEAM188 – 3-D 
2Nodes elements with the shear stiffness set to infinite. The results were found in perfect agreement. 
 
A simple eigenvalue or linear buckling analysis was performed to predict the theoretical buckling 
strength of the ring seen as an ideal linear elastic structure. Numerically, this method corresponds to the 
textbook approach of linear elastic buckling analysis and the eigenvalue buckling solution of a Euler 
column is easily seen match the classical Euler solution. However, this does not turn to be the case for a 
simple ring under hydrostatic pressure. 
 
Figs. 3-5 show the first three eigenmodes from the numerical analysis in the case of R=500 without 
taking into account the effect of transverse shear deformation. It is easy to verify that the first and 
the second modes show a strong affinity to the first two-wave mode from the classic analytical 
formulation (n=2), while the third mode is alike to the second three-wave mode from the classic 
analytical formulation (n=3), see Timoshenko and Gere (1961). 
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Figure 3: First eigenmode (FE analysis: R=500, Pcr = 2.8624 N/mm) 

 

 
Figure 4: Second eigenmode (FE analysis: R=500, Pcr = 3.5000 N/mm) 

 
Figs. 6-8 show the first three eigenmodes from the numerical analysis in the case of R=500 by taking into 
account the effect of transverse shear deformation. The situation is somewhat different from the 
previous case, because It is easy to verify that the first mode shows a strong affinity to the first two-
wave mode from the classic analytical formulation (n=2), while the second and third modes are alike to 
the second three-wave mode from the classic analytical formulation (n=3), see Smith and Simitses 
(1969). This is not surprising, because modes two (Fig.7) and three (Fig.8) are characterised by nearly the 
same eigenvalue corresponding to the magnitude of the critical pressure, i.e.  6.9989 vs 6.9990 N/mm. 
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However, this fact points out that in the numerical treatment of buckling problems, minor variations in 
modelling are capable of producing significant changes in the sequence of buckling patterns (Guarracino 
and Walker 2008). 
 

 
Figure 5: (FE analysis: R=500, Pcr = 7.8750 N/mm) 

 

 
Figure 6: First eigenmode (FE analysis: R=500, 

cr
p = 2.6248 N/mm) 
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Figure 7: Second eigenmode (FE analysis: R=500, 

cr
p = 6.9989 N/mm) 

 

 
Figure 8: Third eigenmode (FE analysis: R=500, 

cr
p = 6.9990 N/mm) 

 
In fact, it is well known that any non-linearity introduces the possibility of non-unique relationships 
between loading applied to the structure and the corresponding buckling failure mode. Also, it is very 
possible that results from numerical non-linear modelling will be nearly coincident and could lead to 
erroneous engineering design. The different sets of first three modes displayed by the FE analyses on 
account of taking into consideration the effect of transverse shear deformation in a case where this 
should be, by virtue of Eqs.(1-4), practically negligible (see Table 1), is a proof of the above 
considerations. 
 



 8 

Table 2 collects the numerical critical pressure results for the same steel ring with a cross section of 
5mm x 50mm and radii R=250, 375 and 500mm, previously calculated on the basis of Eqs. (1-4).  
 

Table 2: Critical pressures for a ring of section 5 x 50 mm (FE) 
R Pcr 

cr
p  (1 /

cr cr
p p− ) 

(mm) (N/mm) (N/mm) (%) 
250 22.898 21.195 8 
375 6.7848 6.2214 9 
500 2.8624 2.6248 9 

 
Here it can be noticed that the results from the FE analyses vary much more than the analytical ones 
when taking into account the effect of extensional and transverse shear deformation. Also, the percent 
difference does not vary significantly with the progressive increase of the radius, as it is the case for the 
analytical results. 
 
Notably, the results based on the Euler-Bernouilli beam theory are not in line with those from Eq.(1) and 
show a not negligible overestimation of the value of the critical pressure. 
 
4. Conclusions 
In the present work some inconsistencies arising from the numerical treatment by a well known FE 
commercial package of the problem of the buckling of circular rings under hydrostatic pressure have 
been pointed out in order to stress once more the need for engineers using the numerical modelling to 
be aware of their limitations and to ensure that the numerical results are always judged bearing in mind 
some fundamental analytical solutions. 
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Dynamic buckling of crash boxes under an impact load 
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Abstract 
Crash boxes (CBs) are widely used to absorb the energy of impact loads in collisions. For crash boxes, 
buckling stress is an important design factor. However, defining the initiation point of the dynamic 
buckling is a challenge due to the dynamic nature of the impact. In this research, experimental drop 
tower tests have been conducted on CBs. Then, finite element (FE) modeling of the CBs was performed 
by Abaqus commercial software, and the FE model was validated by the drop-tower test results. This 
paper provides some important remarks for simulating and validating the FE model. The structural 
behavior of the CB under an impact load is investigated. A new criterion, named section-points criterion, 
is introduced in order to detect the dynamic-buckling point. This criterion is applicable for experimental 
tests and FE simulations, and it shows good accuracy in detecting the buckling point. 
 
1. Introduction 
Crash boxes are thin-walled structures, which are used widely for energy absorption. Well-designed CBs 
can absorb a high amount of energy in comparison to their weight. A clear understanding of the 
structural behavior of a CB under compression loads is required in order to design a proper CB. 
However, because of the complex coupling of material and structural effects, many uncertainties remain 
in this research field (Aghdam et al., 2019; Singer et al., 2002). Furthermore, analyzing CBs under an 
impact load is even more complicated due to the complex dynamic nature of the impact.  
 
Critical-buckling stress of a CB has an important effect on its structural behavior under axial 
compression, and it should be considered in the designing procedure. A square CB can be considered as 
four connected plates and many buckling criteria of the plates are applicable to CBs as well. Plates with 
restrained out-of-plate displacement at the edges have a special capability of bearing the load even 
after buckling up to the load named collapse-force of the plate. This special capability makes detecting 
the buckling point more complicated. In the last decades, some criteria were introduced by researchers 
for the dynamic stability of plates. Kubiak has reviewed several dynamic-buckling criteria (Kubiak, 2013). 
Dynamic buckling criteria can be divided into geometric and energetic categories. Geometric criteria are 
those in which a loss of dynamic stability refers usually to deflection or shortening, whereas the energy 
criteria are designed based on the potential and/or kinetic energy of the system (Kubiak, 2013). The 
energy-based approaches allow determining a lower bound for the dynamic-buckling load without 
solving nonlinear equations of motion of the structure. However, the established lower bound can be 
very conservative (Mallon, 2008). Several geometrical-based approaches were evaluated and compared 
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by Paszkiewiczand and Kubiak (Paszkiewicz and Kubiak, 2015) .The geometric criteria are not so precise 
either for structures with stable post-buckling behavior, and further investigations are required on the 
topic.  
 
For structures with an unstable post-buckling equilibrium path, it is possible to derive mathematically a 
relation for calculating the critical dynamic buckling load (Kubiak, 2013). However, for plate structures, 
the mathematical derivation is not possible and the criteria have been formulated from observations of 
the behavior of such structures or on the basis of experiments (Kubiak, 2013). The most adopted 
dynamic buckling criterion is defined by Budiansky et al. (Mallon, 2008). Budiansky-Hutchinson criterion 
(Hutchinson and Budiansky, 1966) was formulated for structures having an unstable post-bifurcation 
path, and its application to plates, with stable post-buckling path, is based rather on intuition. Currently, 
there are several stability criteria, mostly based on the state of displacements or stress, which are not so 
precise, furthermore except a few papers, e.g., (Kowal–Michalska, 2010), most of the studies considered 
just the elastic range. Therefore, the literature still lacks a promising approach for detecting the 
dynamic-buckling point of thick plates.  
 
In this paper, a new approach, named section-points criterion, is introduced for extracting the dynamic-
buckling load of the CBs, and it is applied to thick CBs. The remainder of this paper is structured as 
follows: the drop-tower test is explained in section 2. Section 3 describes the FE simulation of the CB 
and its validation. Then, results of applying Budianski-Hutchinson criterion are provided, afterward 
section–points criterion is introduced and applied on the CB. Finally, the paper concludes in section 4. 
 

2. Drop tower test 
Drop tower test is a common method of implementing impact load on structures. Drop tower setup 
which was used in this research is shown in Fig. Square CBs made by aluminum 6060 were used for the 

Figure 1: Crash box dimensions (left) drop tower setup (right) 
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experiment. Dimensions of the CBs are shown in Fig. 1. A drop mass of 162 kg was released from 3.3 m 
to apply the impact load. The height of the drop mass was calculated in order to bottom-out the CBs. 
For safety reasons, two black rubber cylinders were set beside the specimens. The height of the 
cylinders was below the height of the bottomed-out CBs. Even though all the samples were cut from the 
same extruded aluminum profile, the folding pattern was not the same for all of them. Some of the 
samples had a mixed folding pattern, but CBs with 11 inextensional folds, also named symmetric folds, 
was the most repeatable case (see Fig. 2b and Fig. 2c). In an inextensional fold, the crests and the valleys 
of the buckles appear alternately in the adjacent side planes of the CB (Chen, 2015). The probability of 
an inextensional folding pattern is higher for the CBs with a width to thickness ratio beyond 40 (Jones, 
1990). Choosing CBs with the mentioned width to thickness ratio can result in more repeatable 
outcomes. Two piezo-electric accelerometers were arranged on the drop mass and averaged output of 
the sensors was adopted.  Moving-window-averaging technique with an equivalent 587 Hz cut-off 
frequency was used as a low-pass filter. The extracted acceleration was converted to the force. 
 
3. Finite element simulation 
A finite element (FE) simulation of the CB was performed by Abaqus commercial software using 
dynamic-explicit analysis. Half of the CB was simulated because of the CB symmetry. The CB was 
simulated between two rigid plates, free boundary condition was assigned to the CB ends. A point mass 
of 162 Kg was implemented on the striking plate. 4-node doubly-curved shell elements with reduced 
integration (S4R) were used for meshing. By performing a mesh-convergence analysis, 1.25 mm mesh 
size showed good accuracy and time efficiency. Material properties of aluminum 6060 were 
implemented (Table 1). The material properties were extracted by conducting tensile tests according to 
ASTM B557M-15 (B07 committee, 2017).  
 
 
 
 
 
 
It should be considered that for an ideal structure, without any geometrical imperfection, if it is 
uniformly compressed the critical-buckling load leads to infinity. Therefore, the dynamic buckling can be 
analyzed only for structures with initial geometrical-imperfections (T. Kubiak, 2013). In a numerical 
simulation of a perfect structure, the numerical round off error triggers the instability. However, the 
numerical errors can generate unrealistic results. Therefore, in order to have more realistic results, a 
small imperfection should be applied on the FE model. The same procedure has been reported by other 

Table 1: material properties of  aluminum 6060 

E 0.002 offset σ_y ρ  σ_u  
(GPa) (MPa) (kg/m3) (MPa) 

70.6 201.4 2.7 248.4 

Figure 2: a) Imperfection on the crash box (exaggerated) b) FE simulation result c) drop tower test result. 
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researchers as well (Meguid et al., 2007; Meguid, Stranart and Heyerman, 2004). It should be noted, in 
the conducted experiments there was not any imperfection made on the CBs, but production 
imperfections are unavoidable. In the FE model, a spline with a slight projection of 0.1 mm (0.25% 
width) at the second-fold location was applied as the imperfection (Fig. 2a). The second-fold location 
was extracted based on the experimental-test result. The FE simulation and experiment results are 
shown in Fig. 2b and Fig. 2c, and force-displacement diagrams are shown in Fig. 3. Overall a good 
agreement was obtained between the results.  
 

3. Results and discussing 
 3.1 Budiansky-Hutchinson stability criterion 
Budianski-Hutchkinson criterion (Hutchinson and Budiansky, 1966) has been applied to the FE-
simulation results in order to detect the dynamic-buckling point. Due to Budiansky-Hutchinson stability 
criterion, dynamic stability loss occurs when the maximal plate deflection grows rapidly with the small 
variation of the load amplitude (Kowal–Michalska, 2010). Hereby, this criterion is used for progressively 
buckled CB. The stress to the transverse-deflection diagram is shown in Fig. 4 for the mid-point of the 

Figure 4: Budiansky-Hutchinson stability criterion 

 

 

Figure 3: Force-displacement diagrams of the experimental test and numerical simulation 
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first fold on the simulated CB. Two important points, located at 110 and 201 MPa, can be detected on 
the diagram. Due to the obvious rapid growth of the deflection, without stress increase, both 110 MPa 
and 201 MPa can be the buckling point, based on the criterion. Even though higher buckling stress than 
110 MPa is expected based on the CB dimensions, the buckling stress can be reduced significantly due to 
the applied imperfection (Budiansky and Hutehinson, 1996). By considering the 110 MPa as the buckling 
stress the rest of the diagram is post-buckling phase of the structure, which is related to plates' special 
capability in withstanding the load after buckling. On the other hand, rapid deflection growth at 110 
MPa can be related just to the first propagation of the stress wave. The stress wave can be calculated as  

 σ = ρcv  (1) 

where σ is shock wave stress, ρ is density, c is the speed of sound in the material and v is impact 
velocity. By considering the progressive buckling of the CB with the regular folding pattern (see Fig.2c), 
plastic buckling of the CB is more probable and thus, the buckling stress of 207 MPa is more reasonable. 
Therefore, the dynamic nature of the impact complicates the structural analysis, and detecting the 
dynamic-buckling point of the CB using Budiansky-Hutchinson criterion is still a challenge.  
 
 3.2 Section-points criterion 
In this section, a new method of detecting initiation of the dynamic-buckling is introduced based on the 
distribution (Dist.) of stress on the cross-section of the plate. The main idea is based on the strain 
difference between the inner and outer surfaces of a bent plate. The method is named section-points 
criterion, and it is applicable for both experiments and numerical simulations.  
Section-points approach can be implemented to the FE simulations by defining thickness integration 
points. By analyzing the stress Dist. along the first fold, structural behavior under the impact load can be 
analyzed. Three integration points (also named section points) are defined on the thickness and 
consequently, outputs on three rows of section points (SPs) along the width can be extracted. By 
increase of stress to the buckling stress, plates start to bend. Due to the bending, stress differs between 
inner and outer surfaces (see Fig. 5). In Fig. 6, the stress Dist. along the width for the SPs are shown, 
which are named stress-Dist.-lines. The extracted stress is the axial stress in the longitudinal direction of 
the CB. By applying the impact load, a stress wave is propagating along the structure and stress is 
increasing for all the SPs. By the second stress-wave propagation, the stress increases beyond the yield 

Figure 5: Stress-distribution change on the thickness due to the buckling. After the buckling, loading is 
function of tangent mopdulus, but relief is function of Young modulus. 
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point of the material. At 3.3 ms, the outer-SPs stress decreases; however, the stress is still increasing at 
the inner-SPs. At the same time, the stress is relatively constant at the mid-SPs. The stress divergence on 
the thickness is related to the buckling initiation and bending of the plate. So it can be concluded that 
the buckling happens at 3.3 ms, when the stress is 207 MPa and it is beyond the material yield point. 
The different rates of stress change at inner and outer SPs can be explained by considering the plastic 
buckling of the CB. The sharp stress reduction at the outer-SPs is a function of the Young modulus; 
however, the stress increase at inner-SPs is a function of the tangent modulus (Fig. 5). In Fig. 6, some 
fluctuations at 0.24 ms can be seen as well on the stress Dist. lines. These small stress fluctuations are 
related to the shock-wave propagation and cannot be considered as buckling initiation as the stress of 
all the nodes is still increasing in the next time steps. For further investigations, Dist.-variation-index is 
introduced for analyzing the CB behavior. Firstly, summation of the axial stresses on outer SPs and inner 
SPs are calculated for nodes located at the middle of the first fold (see Fig. 6 (left)), then Dist.-variation-
index can be calculated by dividing the difference of the extracted summations by the yield stress of the 
material. The sudden increase in the extracted index is the dynamic-buckling point. By considering the 
nodes series along the width, instead of a node at the middle of the fold, a better estimation of the 
buckling initiation can be achieved. The diagram of Dist.-variation-index is shown in Fig. 7. After the first 
stress-wave propagation, the index value increases a bit due to the structural deformation. However, 
after this wave, the diagram shows a constant index up to 3.3 ms, and just then there is a sudden 
increase in the index value which is related to the buckling initiation. Thus, Dist.-variation-index shows 
good accuracy in detecting the initiation point of the dynamic-buckling.  
As it was mentioned, the approach is applicable for experimental tests as well. The strain difference at 
the inner and outer surfaces of the plate should be analyzed, in the experimental tests. For this purpose, 
two strain-gauges should be attached to the inner and outer surfaces of the CB side-wall at the first fold 
location. Since the first fold can occur at either end of the CB in the dynamic test, strain gauges should 
be attached to both ends of the CB plate and at least 4 strain gauges are required. In this case, Dist.-
variation-index can be calculated based on the strain gauges data on just one node. Adding more strain 
gauges along the CB width can increase the accuracy. By section-points criterion, initiation of the 
dynamic buckling can be detected based on the sudden index increase.  
 
3.3 Compressive force distribution 
Analyzing compressive force Dist. on the width of the CB is a common approach to analyze the CB 
behavior and detect the buckling point. The compressive force Dist. along the width of the plate is 
shown in Fig. 8. The compressive force can be calculated as 

 , 
(7) 

Figure 6: Section-points criterion. Buckled CB (red nods are data extraction nodes) (left), axial-stress distribution 
along the CB width (right). 
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where SF, t and h  are section force, thickness and plate thickness value respectively. Due to the 
buckling, load decreases at the mid-side of the plate and it increases at the sides. By analyzing the 
compressive force diagram (Fig. 8), at 0.36 ms the membrane force is almost constant along the width 
and the buckling effect on the compressive force diagram is obvious just after 0.9 ms. By initiation of the 
buckling and stress reduction at the outer surface, stress increases at the inner surface. The membrane 
force diagram provides an average force value of the thickness; therefore, even though it provides 
useful information, it cannot detect the exact buckling point.  
 
4. Conclusions 
The structural behavior of crash boxes under an impact load is investigated in this paper. A geometric 
criterion, named section-points criterion, is introduced for detecting the initiation point of dynamic-
buckling of the crash boxes. The criterion is based on the stress-distribution change along the thickness 
of the crash boxes’ plate. Better estimation of the buckling initiation and also the post-buckling behavior 
can be achieved by considering a series of nodes along the plate width instead of a node at the mid-

Figure 8. Compressive-force distribution along the CB width. 

Figure 7: Section-points criterion and distribution-variation-index, the sudden jump in the index 
shows buckling initiation at 207 MPa 
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point of the fold. The method is applicable for both experimental tests and numerical simulations. For 
evaluating the introduced criterion, Budiansky-Hutchinson criterion was implemented as well for 
detecting the buckling initiation-point, and also compressive-force distribution along the crash-box 
width was studied. The compressive-force distribution approach was not able to detect the buckling 
point. But, Budiansky-Hutchinson criterion could detect the point, even though it was not introduced for 
progressively-buckled crash boxes. However, in this case, this criterion depends on the researcher’s 
experience. Comparing with other criteria, section-points criterion showed superior accuracy in 
detecting the buckling-initiation point. 
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Abstract 
In the paper the analysis of an influence of buckling mode and load  on energy absorption effectiveness 
of thin-walled  frusta was carried out. The influence of factors such as wall angle α, wall thickness t, and 
frustum height H on the buckling mode and load and energy absorption was also analyzed. The analysis 
of influence was performed using Pearson's linear correlation method. A Finite Element (FE) model built 
of shell elements was applied and calculations were performed using ABAQUS commercial code. The 
Cowper-Symonds material model was taken into account. A two step analysis was carried out: buckling 
analysis in the first step, and nonlinear explicit dynamic analysis in the second step. IN the first step 
buckling loads and buckling modes were obtained. In the second step, force-shortening curves. The 
results obtained are compared on graphs and correlation matrix. 
 
 
1 Introduction 
A structural member termed energy absorber converts totally or partially the kinetic energy into 
another form of energy. One of the possible design solutions is the conversion of the kinetic energy of 
impact into the energy of plastic deformation of a thin-walled metallic or hybrid (metallic – foam filled) 
structural member. Among others, thin-walled columns are widely used in crumple zones in vehicles, 
which aim to absorb impact energy and reduce the acceleration acting on the driver and passengers. 
Since the early sixties of the 20th century automotive safety regulations stimulated the development of 
the new concept of a crashworthy (safe) vehicle that had to fulfil integrity and impact energy 
management requirements. There are numerous types of energy absorbers of that kind that are cited in 
the literature (Baroutaji, Sajjia, & Olabi, 2017). Structural members termed “ frusta” (frustum – from 
Latin: piece, bite) are used as energy absorbers due to the stable plastic behavior during axial crushing 
process and due to the decrease of peak crushing load in comparison with cylindrical columns or 
parallelepiped –shaped thin-walled columns. This type of absorbers is particularly used in the transition 
zone between wagon frame and buffer of locomotive or wagon. 
Paper (Alghamdi, 2001) contains the historical state of art review concerning this type of energy 
absorbers. The author quotes research results obtained by other researchers, namely Postlethwaite and 
Mills, who investigated failure modes and crushing behavior of conical frusta. Also Ei-Sobky et al. (El-
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Sobky, Singace, & Petsios, 2001) investigated crushing behavior of conical truncated frusta. They 
analyzed influence of boundary conditions on the peak and mean crushing load.  
Sarkabiri et al. (Sarkabir, Jahan, & Rezvani, 2015)published the results of multi-objective 
crashworthiness optimization of thin-walled conical groove tubes filled with polyurethane foam. They 
stated , that the conical angle reduces the peak crushing force, however it reduces also the absorbed 
energy. Thin-walled  prismatic, hollow frusta were  analyzed  by Hosseini et al. (Hosseini Tehrani & 
Ferestadeh, 2015). In one of the newest papers  by Asanjarani et al (Asanjarani, Dibajian, & Mahdian, 
2017), the results of multi-objective optimization of prismatic, hollow frusta with dents   have been 
published. An influence of number and depth of dents, as well as frustum angle and wall thickness on 
the energy absorbing effectiveness was investigated.  Very recently, Elahi et al (Elahi, Rouzegar, & 
Assaee, 2018) investigated the axial splitting process of thin-walled conical aluminum frusta with conical 
die. The energy-absorption of fibre metal laminate (FML) conical frusta under quasi-static compression 
loading was  studied by Hongyong et al (Jiang, Ren, & Xiang, 2018). Based on the outcome of the 
literature review, it can be said that there are relatively few research projects devoted to energy 
absorption analysis of prismatic frusta. The majority of research in this area is focused on conical frusta.  
 
2  Subject and objectives of the study 
The subject of the present study was a thin-walled prismatic steel hollow frustum of square base 
(Fig.Figure ), produced from two face to face steel channel sections joint by means of two seams 
(double-seam) of one-point spot welds, subjected to axial impact force.  

 
Figure 1. Thin-walled prismatic frustum 

 
The geometry of the investigated object is a frustum of square basis (Fig.1). The lower base is of an edge 
length a = 90 mm. The frustum was of height h, wall thickness t and the wall apex angle α. The material 
used was a high quality steel Dual Phase DP800, of following basic mechanical parameters : Young's 
modulus of 210 GPa and a Poisson's ratio of 0.29, density of 7850 kg/m3 and yield stress 590 MPa. 
The distance between the spot welds and the weld diameter was respectively w=20mm and d=4mm. As 
a result the amount of spot welds is equal to 7. The 3mm thick metal plates of higher strength were 
welded to the frustum  top and bottom edges.  
The aim of this study was to investigate whether the buckling mode affects the energy absorption 
performance. Parametric studies were carried out for varying geometrical parameters of the frustum: 
apex angle( α), wall thickness (t), frustum height (h). The parametric study determined the buckling 
eigenvalues (buckling load) and the buckling mode. The influence of these factors on the two following 
crashworthiness  indicator:  peak crush force (PCF) and energy Absorption (EA) was studied. The 
influence was determined using Pearson's linear correlation method. In addition, the correlation 
between the other parameters and indicators was determined. 

https://www.sciencedirect.com/topics/engineering/energy-absorption
https://www.sciencedirect.com/topics/engineering/fibre-metal-laminate
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3 Methodology 
 
3.1 Finite element model  
Finite Element simulations were conducted using commercial Abaqus® software. Fig.2. presents the 
shell frustum model used for the simulation. The frustum models consisted of two shells, joined 
together by a fastener option. The end edges of the frustum was attached to two rigid platens, which 
were connected by tie links. S4R 4-node elements were used to discretize the frustum shells, and R3D4 
was used for the rigid plate. Fastener option enables to model point connections such as spots weld or 
rivet, between two or more surfaces. Fastening points join by a beam connector two surfaces modelled 
by BEAM elements (Fig.2 b). 

 
Figure 2 Finite Element model: a) discrete model shell frustum, b) fasteners model. 

 

Numerical studies were conducted in two steps analysis. The first  was eigenvalue buckling analysis 
and the second one was nonlinear explicit dynamic analysis. The buckling mode and buckling load were 
extracted from the first step. The buckling modes were used as the initial imperfection in the second 
step analysis. The imperfection scale factor was equal to 0.1 of the wall thickness. In the second step 
analysis the general contact between faces and a friction factor equal to 0.01 were applied. 
In the FE analysis, in each case of the parametric study, a model was impacted using the constant mass 
with constant loading velocity (in all cases of the parametric study) equal v=6.19m/s. A magnitude of the 
impacting mass was determined in the preliminary FEM calculations for each steel sheet wall thickness 
for α= 0 (parallelepiped), under the assumption, that the absorber should be entirely crushed. 
Magnitudes of impacting mass for all cases of the parametric study are specified in Table 1. 
Elastic–plastic material model with kinematic–isotropic hardening was chosen for FE simulations. An 
earlier research by Mołdawa and Kotełko (Kotełko & Mołdawa, 2016), analysed results for different 
material models (rate-dependent elastoplastic material model, Johnson-Cook and Cowper-Symonds 
model) in comparison to the experimental results. It appeared that the latter one, Cowper-Symonds, 
provided the best convergence with the experiment. Dynamic effects of strain rate were taken into 
account by scaling static yield stress with the factor, assumed by Cowper – Symonds relation (1). 
Equivalent stress and equivalent plastic strain were calculated using Huber-Mises yield criterion.  
 

𝜎0̅̅ ̅ = 𝜎𝑌 [1 + (
𝜀̇

𝐷
)

1
𝑞⁄

] (1) 

 
where: 

 𝜎0̅̅ ̅ is a current yield (proof) stress, 

 𝜎𝑌 is the initial yield (proof) stress at static load, 

a) b) 
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 𝜀̇` is the current strain-rate, 

and 𝑞 and 𝐷 are empirical coefficients.  Parameters D and q for DP800 steel were taken from tensile test 
results and literature (Kaczyński & Rusiński, 2014). In the analysis the following values were assumed: q 
= 4.79, D= 110105. 
 
3.2 Buckling behavior analysis – parametric study 
The parametric study into buckling behaviour was performed for the following geometric parameters: 
apex angle α in the range of 0° to 10° with an increment of 1° (max. 8° for 240mm height), frustum 
height equal to 160, 200 or 240 mm. The last parameter was the wall thickness t, which had three 
variations: 0.8, 1 and 1.6 mm. A total of 84 cases differing from each other were obtained. 
There are several crashworthiness indicators (Jones, 2012) used to evaluate the crashworthiness 
performance and the energy absorption capacity of an absorber. In the present analysis the following 
indicators were calculated on the basis of FE calculations: 
 

 Energy Absorption (EA) 

 Peak Crushing Force (PCF), 
 
A typical force – displacement curve for a thin-walled member subjected to axial impact force is shown 
in Fig.3. Peak Crushing Force (PCF)is a maximum value of force,  indicated in Fig.3. 

 
Figure 3 Typical force-displacement curve for thin-walled tubular member under axial impact 

 

The energy absorption (EA) is defined as: 

𝐸𝐴(𝑑𝑥) = ∫ 𝐹(𝑥)𝑑𝑥 
𝑑𝑥

0

[𝐽] (2) 

where dx is a crushing distance.  
 

 
 

a) 

b) 

Table 1 

t[mm] h[mm] Impact 

Mass 

[Kg] 

0.8 160 350 

0.8 200 450 

0.8 240 550 

1 160 450 

1 200 600 

1 240 800 

1.6 160 900 

1.6 200 1200 

1.6 240 1300 
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4 Buckling and crushing process analysis  
Table 2. shows the specification of buckling modes and failure modes in the final stage of crushing 
process, obtained for examined frusta. For all apex angles, eccept α=0° (parallelepiped), two or three 
half-waves of the buckling mode were obtained, depending on the frustum height. Failure modes were 
similar for the case of two  buckling modes and were of different  character for cases of three buckling 
modes, namely for the highest frusta for the highest apex angle. 
 

Table 2 Buckling and failure modes 

 
Buckling mode 

Failure 
mode 

Buckling mode Failure mode 
Buckling 

mode 
Failure mode 

 α=4° 

 h=160mm h=200mm h=240mm 

T=
0

.8
 

 

 

 

 

  

t=
1

m
m

 

 

 

 

 
  

T=
1

.6
 

 

 

 

 

 
 

 α=8° 

 h=160mm h=200mm h=240mm 

T=
0

.8
 

 

 

 

 

  

t=
1

m
m

 

 

 

 

 

  

T=
1

.6
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5 Correlation analysis  
On the basis of numerical FE calculation results the correlation analysis was performer. Table  3.1 
presents the correlation matrix, in which Person linear correlation coefficients r are  shown. 
Additionally, matrix fields  are indicated in different colors, according to  different correlation strength. 
Correlation coefficient takes values in the range <-1,1>. Magnitude of the correlation coefficient 
indicates, in what way one parameter (variable) influences (or is dependent on) other parameters. The 
closer an absolute value of the coefficient r to 1, the stronger is a linear relation. If r=0, the parameters 
are independent on each other. If the coefficient r is positive, the linear relation trend is increasing. If it 
is negative, the trend is  decreasing. Seven levels of correlation strength were distinguished in the 
present analysis (table 3.2).  
 

 
 

One the most important parameters to be analyzed in the initial stage of absorber’s design is energy 
absorption EA. Nearly full correlation of EA was obtained for wall thickness and buckling load, which also 
confirms Fig.4. The magnitude of correlation coefficient between PCF and wall thickness and buckling 
load, as well as between EA and buckling load is above 0.7, which is classified as very high correlation. 
 

 
Figure 4 Comparison of absorbed energy depending on the wall angle and thickness, at different frustum heights. 
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Table 3.2 

 r=0 No correlation 

 0<r<0.1 Very  weak correlation 

 0.1≤r<0.3 Weak correlation 

 0.3≤r<0.5 Moderate correlation 

 0.5≤r<0.7 High correlation 

 0.7≤r<0.9 Very high correlation 

 0.9≤r<1 Nearly full corellation 

 

Table 3.1 Correlation matrix –Person correlation coefficient  r 

  α
 

t h
 

H
al
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w
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 n
. 
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EA
 

P
C

F 

α 
   

0.54 0.11 -0.08 -0.48 

t 
   

0.02 0.97 0.98 0.82 

h 
   

0.65 -0.04 -0.04 -0.15 

 Half-waves n.
 

    
0.05 -0.05 -0.41 

buckling load 
     

0.95 0.75 

EA 
      

0.87 

        

 

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 
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Figure 5. PCF versus buckling load for selected configurations of geometrical parameters. 

 

 
Figure 6`. EA versus buckling load for selected configurations of geometrical parameters 

 
Indicators PCF and EA in terms of the buckling load are shown in Fig. 5 and 6. For selected configurations 
of parameters  t, h and  α (linear diagrams). In Fig. 5 and 6 points corresponding to certain parameters 
configurations are collected in clusters. Markers correspond to different frustum height, while different 
colors correspond to different wall thicknesses. Diagrams in Fig.6 indicate nearly linear relation between 
EA and PCF in terms of buckling load.  
 

6 Conclusions 
The paper presents results of the analysis of the influence of buckling load upon the energy absorption 
of prismatic, thin-walled frusta. In the analysis the Person  linear correlation method was used. A very 
high correlation between the energy absorption (EA) and buckling load was obtained.  
Simultaneously, very high correlation was also achieved between PCF- buckling load and PCF-EA.  
These results suggest a possibility to create relatively simple linear models, which may be used in 
optimization procedures and initial stage design process of thin-walled absorbers under investigation. It 
means, that at such an initial stage of, an eigenvalue buckling analysis performed using FE simulations 
(much less time consuming than non-linear explicit one) can  be used. After performing an optimization 
procedure  based on the mentioned linear model, a more precise nonlinear explicit FE analysis could be 
continued for selected absorber’s parameters. 
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Influence of the Imperfection Shapes on the Collapse Mechanisms of Stiffened 

Plates with Class 4 Trapezoidal Stiffeners 
 

Ralph Timmers1 
 
 
Abstract  
Designing structures with stiffened plated elements is a widely used construction method. One possibility 
to analyze such a structure is to use the FEM and perform a geometrical and material nonlinear analysis, 
including  imperfections  (GMNIA).  The  Eurocode  EN 1993‐1‐5  gives  some  information  to  the  use  of 
imperfections,  but  they  are  very  general  formulated.  In  the  case  of  plated  structures  with  class 4 
stiffeners, no detailed information is given on how to combine the local imperfection shapes for different 
subpanels with different half‐wavelengths. To carry out  the  influence of  the global and different  local 
imperfection  shapes,  with  respect  to  their  individual  half‐wavelengths  and  amplitudes,  numerical 
simulations on a typically stiffened structure with class 4 plate and stiffeners were performed. The system 
was analyzed with a set of different combinations of imperfection shapes. Concerning the load‐deflection 
curves of such stiffened plated elements, research often focuses on the increasing part of the curve. Still, 
for a more in‐depth understanding, also the decreasing part, including the collapse mechanism, plays an 
important  role  (post‐failure behavior). Therefore,  the entire  load‐deflection  curves were obtained.  In 
doing so, the influence of the different imperfection shapes could be determined by comparing their load‐
deflection curve behaviors and their corresponding collapse mechanisms, which is the main goal of this 
research. The presented study can be seen as a complement to the already given information on the use 
of equivalent geometric imperfections and tries to increase the ease of use of EN 1993‐1‐5.  
 
 
1. Introduction  
Designing structures with stiffened plated elements  is a widely used construction method. Due to the 
slenderness of the plates, usually flat or trapezoidal stiffeners are used to strengthen the plates. There is 
a  trend  towards using  larger  trapezoidal  stiffeners  (Sinur  et  al.  2012). Additionally,  steel with higher 
strengths  is also used more and more. As a result, the single subpanels of the plate and the stiffeners 
become even more slender, and their buckling behavior must be considered in the analysis. 
 
Concerning  the  load‐deflection  curves  of  stiffened  plated  elements,  research  often  focuses  on  the 
increasing part of the curve, but for a more in‐depth understanding, also the decreasing part (post‐failure 
behavior)  including  the  plastic  collapse mechanism  plays  an  important  role  (compare  among  others 
(Kotełko et al. 2011; Hancock 2018)). Fortunately,  it  is possible  to calculate  the whole  load‐deflection 
curve with advanced numerical methods. Due to their universal application possibilities, the FEM is used. 
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In doing so, geometrical and material nonlinearities,  including geometric and structural  imperfections, 
must  be  taken  into  account  (GMNIA).  The  real  geometric  and  structural  imperfections  are  usually 
unknown  during  the  design  process.  There  can  be  found  some  information  in  the  literature  to  the 
allowable  geometric  imperfections  from manufacturing  and  also  for  the  residual  stress patterns, but 
especially  the  structural  imperfections  can  lead  to  numerical  problems  during  the  simulations.  An 
alternative is the use of so‐called equivalent geometric imperfections. The Annex C of Eurocode EN 1993‐
1‐5  gives  general  information  on  how  to  deal  with  such  equivalent  geometric  imperfections. 
Unfortunately, the provided information is very general formulated and must be individually adapted to 
the respective application case. Furthermore, the different imperfection types must be combined in such 
a way that the lowest resistance is obtained, which leads to a whole number of calculations. For the here 
considered  case  of  a  trapezoidal  stiffened  plate with  class 4  stiffeners,  usually,  local  buckling  of  all 
subpanels  from the plate and the stiffeners, and also global buckling of  the whole plate  including the 
stiffeners must be  taken  into account.  In doing  so,  the half‐wavelength of an  individually  considered 
subpanel  corresponds nearly  to  the width of  the  subpanel. Therefore,  the question arises on how  to 
combine  the  global  and  different  local  imperfection  shapes  of  the  trapezoidal  stiffened  panels, with 
respect to their half‐wavelengths and amplitudes, when performing a GMNIA according to EN 1993‐1‐5. 
 
Numerical  simulations  (GMNIA)  on  a  typically  stiffened  plate with  class 4  plate  and  stiffeners were 
performed to answer this question. The system was analyzed with a set of different imperfection shapes. 
The  programming  capabilities  of  the  FE‐software  were  used  to  generate  the  different  equivalent 
geometric  imperfection  shapes  as  a  combination of  sinus‐functions  to meet  the  requirements of  the 
EN 1993‐1‐5.  Furthermore,  the  entire  load‐deflection  curves  were  obtained.  The  main  goal  of  this 
research was to check the  influence of the different combinations of  local  imperfection shapes and to 
investigate their behavior on the load‐deflection curve and the corresponding plastic failure mechanism. 
The presented research can be seen as a complement to the already given  information on the use of 
equivalent geometric imperfections and tries to increase the ease of use of EN 1993‐1‐5.  
 
2. Geometry and Numerical Modelling  
 
2.1 Geometry  
The following geometry was studied in this paper, which consists of a bottom plate and three trapezoidal 
stiffeners. The subpanels and the single panels of the stiffeners correspond all to a class 4 section. The 
geometry can be seen from Fig. 1, and the parameters are defined in Table 1.  
 

 
Figure 1: Definition of the geometry and the parameters.    
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Table 1: Parameters used.  
Parameter  Description 

3300mma    Length of the bottom plate 
3300mmb    Width of the bottom plate 
12mmwt    Thickness of the bottom plate 
6mmslt    Thickness of the stiffener 

0 600mmb    Width of the subpanel 

1 300mmb    Width of the larger side of the trapezoidal stiffener 

2 240mmb    Width of the smaller side of the trapezoidal stiffener 
300mmslh    Height of the trapezoidal stiffener 

3 301.5mmb �   Resulting width of the inclined side of the trapezoidal stiffener 
 
2.2 Imperfections  
The  Eurocode  EN 1993‐1‐5  recommend  to  include  a  global  imperfection  of  each  stiffener  and  local 
imperfections of each subpanel, which must be combined  in a most unfavorable way.  In doing so, the 
shapes shown in Fig. 2 (a) were considered. The shape “Local 1” considers local buckling of all subpanels, 
but it can also be assumed that failure is dominated by buckling of the bottom plate. Therefore, the shapes 
“Local 2” and “Local 3” were amended without local imperfections of the stiffeners.  
 

 
(a)  (b) 

Figure 2: Imperfection shapes: (a) Global and different local shapes; (b) Definition of the corresponding 
amplitudes.  

 
The elastic buckling shape of a single plate under compression results in a “more or less” circular shape. 
Therefore, the natural number of half‐waves (which would also result from a LBA) of the global panel and 
the subpanels of the considered geometry (compare Fig. 2 (b)) would result in:  
 
  b b0 b1 b2 b31   ,    6   ,    11   ,    14    ,    11n n n n n       (1) 
 
Furthermore, all imperfection shapes were approximated with sinus‐functions. The global shape of each 
stiffener   glow x  corresponds  to  a  bow,  according  to  Eq. 2,  where  0,glow  represents  the  maximal 

amplitude.  The  local  imperfection  shapes  of  each  subpanel   loc ,w x y  were  considered  as  a  buckling 

shape, according  to Eq. 2, where  0,loc 0,b0 0,b3w w w   denotes  the maximal amplitude,  loc 0 3b b b   the 
width, and  loc b0 b3n n n   the number of half‐waves of the subpanel under consideration, see Fig. 2 (b).  
 

   glo 0,glo sin bn x
w x w

a

     
 

    loc
loc 0,loc

loc

, sin sin
n x y

w x y w
a b

          
   

  (2) 
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The global and the different local shapes must be combined in an unfavorable way. Unfortunately, the 
combination is unknown, which means that different combinations must be checked. Furthermore, it is 
not clear which number of half‐waves per subpanel leads to the lowest resistance. It can be assumed that 
using the natural number of half‐waves of each subpanel is unfavorable. Still, it can also be assumed that, 
if one subpanel buckles first, it is more unfavorable that the neighboring subpanels buckle with the same 
number  of  half‐wavelengths.  The  18  combinations  given  in  Table  2 were  investigated  to  check  this 
behavior.  
 

Table 2: Investigated imperfection shapes.  

Combination1  Imperfection shapes, 
acc. to Fig. 2 (a)  Number of local half‐waves per subpanel 

1 and 10  ±Global + Local 1  b0 b1 6n n  ,  b2 6n  ,  b3 6n   

2 and 11  ±Global + Local 1  b0 b1 6n n  ,  b2 11n  ,  b3 11n   

3 and 12  ±Global + Local 1  b0 b1 6n n  ,  b2 14n  ,  b3 14n   

4 and 13  ±Global + Local 1  b0 b1 6n n  ,  b2 14n  ,  b3 11n   

5 and 14  ±Global + Local 1  b0 b1 11n n  ,  b2 11n  ,  b3 11n   

6 and 15  ±Global + Local 1  b0 b1 11n n  ,  b2 14n  ,  b3 14n   
7 and 16  ±Global + Local 1  b0 b1 11n n  ,  b2 14n  ,  b3 11n   
8 and 17  ±Global + Local 2  b0 b1 6n n   
9 and 18  ±Global + Local 3  b0 6n   

1. The combinations 1 to 9 have a positive global amplitude, and the combinations 10 to 18 have a 
negative global amplitude.  

 
The  maximal  amplitudes  of  the  different  imperfection  shapes  were  calculated  according  to  the 
recommendations from EN 1993‐1‐5. It was assumed that the given amplitudes for local buckling shapes 
refer to a more or  less circular shape. Especially for  imperfection shapes with a  larger number of half‐
waves, the half‐wavelength was used to calculate the amplitude (instead of the local plate width). For the 
applied geometry, this was only considered for the larger subpanel of the bottom plate (width  0b ). The 
differences between the maximal amplitudes of the other  (less wide) subpanels were negligibly small. 
Concerning Fig. 2 (b), the following amplitudes were used:  
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  (3) 

 
2.3 Numerical Modelling  
The system was calculated with the FE‐software ANSYS  (Ansys 2019). Three  identical stiffened panels, 
according to Fig. 1, were modeled, which results in a total length of 3 9900mma  . The compression force 
acts at the edges of the outer panels (bottom plate and all stiffeners) with a resulting maximum stress in 
the plated structure of  x y 355MPaf   , see Fig. 3 (a) and (b). An elastic‐ideal plastic material model was 
used. The global  imperfection shape was applied alternating to all three panels. The  local shapes were 
only applied to the middle panel to avoid failure of the outer panels. The different imperfection shapes 
were applied by using the programming capabilities of the software used. Exemplarily, Fig. 3 (c‐f) shows 
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some  selected  imperfection  shapes. With  the generated model,  the 18  combinations of  imperfection 
shapes from Table 2 were analyzed. A mesh convergence study was carried out for all calculations to get 
convergent results. The obtained results are presented in the following section.  
 

   
(a)  (b) 

   
(c)  (d) 

   
(e)  (f) 

Figure 3: FE‐Model and selected imperfection shapes: (a) Geometry, mesh and loading situation; (b) Normal 
stresses from a LA without imperfections; (c) Global imperfection shape (positive amplitude); (d) Combination 1 

(only local); (e) Combination 4 (only local); (f) Combination 9 (only local).    
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3. Results and Discussion  
Fig. 4  shows  the  obtained  load‐deflection  curves  of  the  18  considered  combinations  of  imperfection 
shapes from Table 2. The  load factor  u  is defined as the  load  x  normalized by  yf . The deflection  xu  
represents  the  corresponding  shorting  of  the  bottom  plate  of  the middle  panel.  As  expected,  after 
reaching the peak of the  load‐deflection curve, all combinations show a decreasing  load behavior. The 
combinations  1  to  9  (positive  global  amplitude)  show  an  increasing  and  the  combinations  10  to  18 
(negative global amplitude), a decreasing shortening of the bottom plate. This is the result of the bending 
moment  due  to  the  global  imperfection  and  the  applied  force. More  details  of  the  peaks  of  each 
combination are shown in Fig. 5, and the corresponding maximum load factors are given in Table 3.  
 

   
(a)  (b) 

Figure 4: Load‐deflection curves of all investigated combinations: (a) Complete curves; (b) Detail of the peaks.  
 

   
(a)  (b) 

Figure 5: Peak of the load‐deflection curves: (a) Combinations 1 to 9; (b) Combinations 10 to 18.  
 

Table 3: Maximum load factors.  
Comb.  1  2  3  4  5  6  7  8  9  min. 

u   0.800  0.792  0.787  0.792  0.802  0.797  0.803  0.803  0.826  0.787 
 

Comb.  10  11  12  13  14  15  16  17  18  min. 

u   0.793  0.720  0.681  0.707  0.726  0.697  0.716  0.815  0.828  0.681 
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The combinations 1 to 9 have a positive global amplitude (see Fig. 3 (c)). This means that the resulting 
bending moment from compression force and global imperfection increases the compression stresses in 
the bottom plate, and decreases  the compression  stresses  in  the upper  section of  the stiffeners. The 
resulting failure mechanisms can be visualized by plotting the equivalent plastic strains. Combination 6 
shows the steepest drop after reaching the peak of the load‐deflection curve. The corresponding failure 
mechanisms are shown in Fig. 6 (a, b). At the peak of the load‐deflection curve, most of the local buckles 
of the bottom plate show small plastic regions. After  failure,  the so‐called roof‐shape mechanism was 
formed in each subpanel, including a yield zone in the inclined sides of each stiffener. Such a mechanism 
was also obtained  in experiments  (Mahendran 1997). Due  to  the bending moment,  the bottom plate 
carries the higher compression stresses, whereas the smaller top parts of the stiffeners have to take the 
lower compression stresses. A similar failure mechanism was obtained for all combinations from 1 to 8. 
Furthermore, it can be seen that the influence of the number of local half‐waves on the maximum load 
factor is low, but the steepest drop of the load‐deflection curve after reaching the peak was obtained for 
a higher number of local half‐waves (combination 6).  
 

   
(a)  (b) 

   
(c)  (d) 

Figure 6: Failure mechanisms (equivalent plastic strain): (a, b) Combination 6; (c, d) Combination 12; (a, c) Peak of 
the load‐deflection curve; (b, d) After reaching the peak (post‐failure).  

 
The  load‐deflection  curves  from  combinations  10  to  18  show  a  different  behavior  as  obtained  for 
combinations 1 to 8, but similar to combination 9. The  lowest maximum  load  factor was obtained  for 
combination 12. Fig 6 (c, d) shows the corresponding failure mechanism, which looks like a plastic hinge 
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at  the  top  subpanel  accompanied  by modified  roof‐shape mechanisms  at  the  inclined  panels  of  the 
stiffeners. A similar mechanism was obtained experimentally in (Kotelko et al. 2000; Kotełko 2004) for box 
section beams under bending and also numerically in (Timmers et al. 2016) for unstiffened plates under 
compression and bending. The failure mechanisms for all combinations from 10 to 18 are similar. The 
maximum  load  factors  for  combinations  10,  17,  and  18  are  significantly  higher  than  for  the  other 
combinations  (see  Table  3).  No  local  imperfections  were  applied  to  the  combinations  17  and  18. 
Therefore,  the stiffeners behave “stiffer” as with  local  imperfections, resulting  in a higher  load  factor. 
Nevertheless, after reaching the peak of the load‐deflection curve, a similar failure mechanism, as shown 
in Fig. 6 (d) was obtained. For combination 10, a  local  imperfection shape with only six half‐waves was 
applied. Again, the stiffener behaves to stiff, which results in the higher load factor.  
 
Compared  to  combinations 1  to 8,  combination 9  results  in a  slightly higher  load  factor and different 
behavior of  the  load‐deflection  curve. This behavior  can be explained by  looking  again  at  the  failure 
mechanism. After  reaching  the peak of  the  load‐deflection curve, a  local  failure mechanism similar  to 
Fig. 6 (d) was  formed  in  the  right outer panel. This  is quite  interesting because no  local  imperfection 
shapes were applied  to  the exterior panels.  In  this case,  the outer panels have only a negative global 
amplitude, which means  that  the  resulting bending moment  increases  the  compression  forces  in  the 
upper  part  of  the  stiffeners. Due  to  the missing  local  imperfection  shapes  in  the middle  panel,  the 
resistance of  the middle panel  is higher  than obtained  for  the combinations 1  to 8. Furthermore,  the 
stiffness is that high, that failure occurred first in the outer panel without any local imperfections applied.  
 
4. Conclusion  
Based on the obtained results, it can be drawn that for class 4 stiffeners, the local imperfections should 
always  be  applied.  In  cases with  a  positive  global  amplitude,  the  local  imperfections  and  their  half‐
wavelengths of the stiffeners have a minor influence. This is because the resulting bending moment forces 
failure of the subpanels of the bottom plate. The natural number of half‐waves should be applied to allow 
the roof‐shape mechanism to develop. In cases with a negative global imperfection shape, the bending 
moment forces failure of the top section of the stiffener. In this case, a higher number of local half‐waves 
is  recommended  to  allow  the  local  mechanism  (plastic  hinge)  to  develop.  Neglecting  the  local 
imperfection  shapes of  the  stiffeners  resulted  in both  cases  in a  too  stiff behavior. Furthermore,  the 
minimum load factor of combinations 10 to 18 is approximately 13% lower than for combinations 1 to 9.  
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Abstract 
Paper presents the dynamic stability problem of three-layered annular plate in thermal environment. 
Plate is subjected to the mechanical load with forces acting in the plane of plate outer layers and 
temperature field defined by the temperature difference between plate edges. Mainly, the effect of the 
rate of plate imperfection on values of the critical parameters has been examined. Plate model has been 
solved analytically and numerically using the approximation methods: orthogonalization and finite 
differences, and finite element. Obtained values of critical temperature differences or critical 
mechanical loads and corresponding with them temperature differences show the dynamic reaction of 
examined plate on time-dependent loads and parameter connected with the plate preliminary 
geometry. The influence of imperfection rate on final results can be meaningful.  
 
1. Introduction 
The response of the plate three-layered structure on thermal and mechanical loading depends on 
different parameters. In time-dependent problem with deflections increasing in time within the loading 
process one of the geometrical plate parameter, which is the rate of imperfection has the particular 
meaning. On account of the wide range of possible applications of circular or annular composite plates 
also with layered structure in aerospace industry, mechanical and nuclear engineering, civil engineering 
or miniature mechanical systems the buckling problem of them is current and still undertaken. As the 
example the papers by Ghiasian et all. (2014) and Zhang et all. (2019) can be. Paper by Ghiasian et all 
(2014) presents the solution for moderately thick annular plate made of FGM composite. The effect of 
uniform temperature rise and heat conduction across plate thickness on critical buckling are considered. 
The critical buckling and dynamic postbuckling responses of the FGM annular plates with initial 
geometric imperfections are considered in paper by Zhang et all (2019). The effects of the loads and 
material parameters and imperfection rates on dynamic behaviours and values of critical temperatures 
are examined in detailed. The proposed in this paper way of analytical and numerical solution to the 
problem refers to the solution of annular plate loaded mechanically presented in works by Pawlus 
(2011a),(2011b). Both temperature field effect and plate imperfection influence on plate dynamic 
response are in presented examination important practical and cognitive elements of undertaken 
analyses. The three-layered annular plate composed of thin steel facings and thicker foam core in 
complex thermo-mechanical state of loading is an object of consideration. Plate is loaded thermally with 
increasing in time temperature difference, which exists between plate edges or is dynamically loaded 
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mechanically and thermally with increasing in time temperature difference or is subjected to the 
constant temperature field. Mechanical load is expressed by the quickly increasing in time forces, which 
compress plate facings and are uniformly distributed on outer edge of facings. Time-dependent 
mechanical and thermal loads are formulated by the equations (1), (2), respectively:  

                                                                                     p st ,                                                                                     (1) 

                                                                                  ΔT at                                                                                      (2) 

where p is the compressive stress, s is the rate of mechanical loading growth, T is the temperature 
difference, a is the rate of temperature loading growth, t is the time. 
The main objective of the analysis is the influence of the rate of plate imperfection on dynamic response 
and values of critical parameters, like critical load and critical temperature difference. Figure 1 shows 
the scheme of examined plate in thermal environment with temperatures Ti and To in the area of plate 
hole and outer perimeter, respectively. Plate transversal structure is symmetrical. The temperature field 
is axisymmetric and flat. There is no heat exchange between plate surfaces. The heat flow defined by 
the logarithmic distribution of temperature versus the plate radius (see, Eq. 3) exists only in radial 
direction of plate facings. Material constants do not depend on temperature. Support system of the 
examined plates is in the form of both edges slideably clamped. Undertaken dynamic stability problem 
requires to adopt the criterion of the loss of stability. The criterion presented by Volmir (1972) was 
adopted. According to this criterion the loss of plate stability occurs at the moment when the speed of 
the point of maximum deflection reaches the first maximum value. Two plate models built using finite 
difference method (FDM plate model) and finite element method (FEM plate model) have been 
analysed in numerical investigations. Using the finite element method the model in the form of annular 
plate has been used in analysis. The calculations were carried out at the Academic Computer Center 
CYFRONET-CRACOW (KBN/SGI_ORIGIN_2000/Płódzka/030/1999) using the ABAQUS system. 
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Figure 1: Scheme of three-layered annular plate composed of facings (layers 1,3) and core (layer 2) loaded with 
compressive stress p and subjected to axisymmetrical temperature field Ti, To  

 
2. Solution procedure using the finite difference method 
Solution procedure is based on: formulation of the dynamic equilibrium equations, formulation of the 
sectional forces and moments in facings including the thermal elements, acceptance of the stress 
function to determine the resultant membrane forces, description of the support conditions for the 
plate with both edges slideably clamped and conditions for plate edges mechanically and thermally 
loaded, determination of the shape functions and form of plate imperfection, acceptance of 

dimensionless quantities and expressions, like for example: 1=wd/h, where wd is the additional plate 

deflection, h is the total plate thickness and connected with mechanical loading (see, Eq. 1): t*=tK7, 

K7=s/pcr, where pcr is the critical static load, and connected with thermal loading (see, Eq. 2): t*=tTK7, 

TK7=a/Tf, where Tf is the fixed temperature difference. The temperature distribution is a function of 
only one geometrical variable – plate radius and is expressed by logarithmic equation: 

                                                                              ln
ln

i o
N o

i

T T
T T 




                                                                    (3) 

where: Ti, To are the temperatures of the inner and outer plate perimeters, =r/ro , i=ri/ro are the  
dimensionless plate radius and dimensionless inner plate radius, ro is the outer plate radius. 
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Important in presented analysis form of plate imperfection o (o=wo/h) is expressed by the following 
equation presented by Wojciech (1979):  

                                                               o 1 2ζ ρ,θ ξ (ρ)η(ρ)  ξ (ρ)η(ρ)cos(mθ)                                                 (4) 

where wo is a plate preliminary deflection which expresses rate of imperfection, m is a number of 

buckling circumferential waves, 1, 2 are the calibrating numbers, () is a function: 

()=4+A12+A22ln+A3ln+A4, Ai are the quantities fulfilling the conditions of clamped edges. 
The basic system of differential equations, determined using the finite difference method to 

approximate the derivatives with respect to  by the central differences in the discrete points has the 
following form: 

                                                                                 KPU Q U   ,                                                                       (5)                                     

                                                                          Y Y NS T 'M Y Q     ,                                                               (6)                                                                          

                                                                                    V VM V Q ,                                                                            (7) 

                                                                                   Z ZM Z Q  ,                                                                            (8)                                                                                   

                                                                        D U GM D M U M G   0 ,                                                             (9) 

                                                                    GG GU GDM G M U M D   0 .                                                        (10) 

For plate loaded mechanically with constant temperature difference between edges the Eq. 6 has been 
modified to the form 

                                                                          


  M Y QY Y

T T
i oS
ln

i


,                                                              (11) 

where K, S are expressed as 
'

2
27 oK TK r

h
h

h
M ; 

2

2

z
r

S
h
 ; , , , , , , , , , ,V Y zU Y V Z U Q Q Q Q D G  are 

vectors of plate additional deflections and components of the stress function and deflection derivatives 
with respect to time t, and vectors of expressions composed of the initial and additional deflections, 

geometric and material parameters, components of the stress function, radius , quantity b (b – length 

of the interval in the finite difference method), coefficients ,   (differences of radial and 
circumferential displacements of points in middle surfaces of facings, respectively) and number 

m; Y V Z D G GG, , , , , , , ,, GD U GUM M M M M M M P M M  are matrices of elements composed of geometric and 

material parameters, the radius , quantity b and number m. 
 

3. Example analyses 
The exemplary numerical calculations were carried out for plate with the following material, geometrical 

and loading parameters: inner radius: ri=0.2 m, outer radius: ro=0.5 m, facing thickness: h=0.001 m; core 

thickness: h2=0.005 m; value of the rate 2 (described in Figs as ksi2) of plate preliminary deflection is 

equal to: 2=0.5,1,2; steel for facing material: Young’s modulus E=2.1105 MPa, Poisson’s ratio =0.3, 

mass density =7.85103 kg/m3, linear expansion coefficient =0.000012 1/K; polyurethane foam for 
core material treated as isotropic: Kirchhoff’s modulus G2=5 MPa, Young’s modulus E2=13 MPa, 

Poisson’s ratio =0.3, mass density 2=64 kg/m3; linear expansion coefficient =0.00007 1/K; the rate of 

mechanical loading growth on the plate outer edge is equal to s931 MPa/s (K7=20 1/s); the rate of 
thermal loading growth on the plate edge is equal to a=200, 800 K/s. Plate is subjected to the thermal 
field with a positive or negative gradient. Positive gradient of thermal field is when the value of 
temperature on the inner plate edge Ti is greater than on outer one To (Ti>To), (see, Fig.1). 
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3.1 Plate loaded thermally 

Fig. 2 shows the time histories of plate deflections 1max=f(t*) for FDM plate models loaded thermally 
with the rate of loading growth equal to a=200 K/s. Positive temperature gradient exists. Presented 
results are for axisymmetrical m=0 and asymmetrical m=7 plate modes. Table 1 presents the values of 

critical temperature differences Tcr for FDM plate models with the different values 2 of imperfection. 

Fig. 3 shows the time histories of plate deflections 1max=f(t*) for plates loaded thermally with the rate 
a=200 K/s and negative temperature gradient. Presented results are for two selected modes m=7 and 
m=14. Results showed that numbers m=7 and m=14 of buckling circumferential waves correspond to 

minimal value of critical temperature differences Tcr for plates loaded with positive and negative 

temperature gradient, respectively. Table 2 presents the values Tcr for FDM plate models with different 

values 2 of imperfection. Summarizing, it can be observed that the influence of the value of rate 2 of 

imperfection on critical temperature difference Tcr is insignificant. Greater differences are observed 

between the values of critical plate deflections (see, Figs 2,3). Minimal increase of Tcr value is observed 

for plate model with the rate of imperfection equal to 2=2. 
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Figure 2: Time histories of deflections versus imperfection rate 2 for plate models m=0, m=7 

loaded only thermally with positive temperature gradient  
 

Table 1: Critical temperature differences Tcr versus imperfection rate 2 for plate  
loaded only thermally with positive temperature gradient 

mode m 

Tcr (K) 

2 

0.5 1 2 

0 130.0 130.2 130.7 
7 107.4 108.0 108.2 

 
Table 2: Critical temperature differences Tcr versus imperfection rate 2 for plate  

loaded only thermally with negative temperature gradient 

mode m 

Tcr (K) 

2 

0.5 1 2 

0 180.3 180.9 181.6 
7 132.8 130.6 134.5 
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Figure 3: Time histories of deflections versus imperfection rate 2 for plate models m=7, m=14 

loaded only thermally with negative temperature gradient 

 
3.2 Plate loaded mechanically and thermally 
Figs 4,5,6,7 shows the time histories of deflections for FDM plate model compressed on outer edge with 

the forces increasing in time. The rate of mechanical loading growth is equal to s931 MPa/s (K7=20 
1/s). Presented curves concern the axisymmetrical m=0 form of plate buckling. The profile of 
temperature field is expressed by the Eq. 2 or by constant positive (Figs 4,5) or negative (Figs 6,7) 
temperature gradient. The temperature difference increases in time with the rate a equal to: a=200 K/s 
or 800 K/s. In constant temperature field the stationary temperature gradient between plate edges is 

equal to high value T=800 K. Results presented for the greater value of the rate a equal to a=800 K/s or 

high value of constant temperature difference T=800 K can be the example of the dynamic response of 
plate under thermal impact, like during the aerodynamic or laser heating (Zhang et all (2019)). Figs 4,6 
show the comparison between the plate models loaded only mechanically (a=0 K/s) or both 
mechanically and thermally with two values of the rate a=200 K/s and a=800 K/s and positive or 
negative temperature gradient, respectively.  
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Figure 4: Time histories of deflections versus imperfection rate 2 for plate model m=0 loaded mechanically and 

thermally with positive temperature gradient 
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Figure 5: Time histories of deflections versus imperfection rate 2 for plate model m=0 loaded mechanically and 

thermally with rate a=800 K/s or constant temperature T=800 K with positive gradient 

 
Figs 5,7 show the reactions of plates loaded mechanically and thermally quickly in time with rate a=800 

K/s or located in thermal environment with high temperature difference equal to T=800 K. 
Temperature gradient is also positive or negative, respectively. Tables 3,4 present the detailed values of 

critical, dynamic loads pcrdyn and corresponding temperature differences Tb when the loss of plate 

stability occurs. With increase of the imperfection rate 2 the critical load pcrdyn and temperature 

difference Tb which exists between plate edges decrease. Plate subjected to the impact value of the 
rate of temperature growth (a=800 K/s) with positive gradient loses dynamic stability for much smaller 
value of critical load pcrdyn. Direction of the temperature gradient has here meaning. Critical loads pcrdyn 
of plate loaded in thermal environment with constant, negative temperature difference are higher than 
obtained for plate model loaded mechanically and thermally increasing in time.  
 

Table 3: Critical, dynamic mechanical loads pcrdyn and corresponding temperature differences Tb versus 

imperfection rate 2 for plate loaded mechanically and thermally with positive temperature gradient 

a (K/s) 

T (K) 

pcrdyn  (MPa) / Tb (K) 

2 

0.5 1 2 

0 40.52 / 0 38.66 / 0 35.8 / 0 
200 39.59 / 8.5 37.26 / 8.0 34.47 / 7.4 
800 31.21 / 26.8 29.35 / 25.2 29.35 / 25.2 

T=800 26.08 / 22.4 23.76 / 20.4 22.36 / 19.2 

  

Table 4: Critical, dynamic mechanical loads pcrdyn and corresponding temperature differences Tb versus 

imperfection rate 2 for plate loaded mechanically and thermally with negative temperature gradient 

a (K/s) 

T (K) 

pcrdyn  (MPa) / Tb (K) 

2 

0.5 1 2 

0 40.52 / 0 38.66 / 0 35.8 / 0 
200 42.39 / 9.1 40.06 / 8.6        37.26 / 8.0 
800 47.51 / 40.8 45.18 / 38.8 42.39 / 36.4 

T=800 48.44 / 41.6 46.58 / 40.0 44.25 / 38.0 
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Summarizing, it can be noticed that the minimal values of pcrdyn are observed for plates with 

imperfection rate 2=2 subjected to positive temperature gradient with high temperature difference 
between edges.  
Additionally, the dynamic thermal buckling is presented for FDM plate models with negative 
imperfection. The comparison between reactions of plates with positive and negative imperfection is 
presented in Fig. 8. The negative value of imperfection rate does not influence the values of critical 

loads. The character of changes of curves 1max=f(t*) is similar for each examined case of plate 

preliminary deflection.Table 5 presents the critical values pcrdyn, Tb evaluated for FEM plate model built 
using the finite element method. FEM plate model is subjected to only mechanical load (a=0 K/s) and 
thermal one with a=200 K/s and a=800 K/s with positive gradient. Results confirm the observations 
presented for plate model built using the finite difference method. The minimal value of pcrdyn is for plate 

quickly thermally loaded (a=800 K/s) having the grater value of imperfection rate 2=2.   
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Figure 6: Time histories of deflections versus imperfection rate 2 for plate model m=0 loaded mechanically and 

thermally with negative temperature gradient 

 
Table 5: Critical mechanical loads pcrdyn and corresponding temperature differences Tb versus rate 2 for FEM 

plate model loaded mechanically and thermally with positive temperature gradient 

a (K/s) 

T (K) 

pcrdyn  (MPa) / Tb (K) 

2 

0.5 1 2 

0 31.18  35.37 33.51 
200 36.77 / 7.9 35.37 / 7.6       33.51 / 7.2 
800 33.04 / 28.4 31.18 / 26.8 29.32 / 25.2 

 
4. Conclusions 
The paper presents the effect of the rate of plate preliminary deflection on values of mechanical and 
thermal critical loads. It was taken into account the direction of temperature gradient existing between 
plate edges, rate of temperature difference growth, profile of temperature field, sensitivity of examined 
plate on negative imperfections. Presented results show minimal influence of both directions and value 
of imperfection on values of critical temperature differences. In thermo-mechanical process of dynamic 
buckling besides the parameters of mechanical load the speed of the temperature difference growth 
between plate edges and the temperature gradient direction have meaning. The profile of temperature 
field has here meaning, too. There is observed the difference between plate reactions on fixed 
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temperature field and time-dependent temperature field increasing in time. Presented analyses show 
the possibility to control the conditions of plate work in order to effectively use plate structure. 
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Figure 7: Time histories of deflections versus imperfection rate 2 for plate model m=0 loaded mechanically and 

thermally with rate a=800 K/s or constant temperature T=800 K with negative gradient 
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Figure 8: Time histories of deflections versus imperfection rate 2 for plate model m=0 with negative and positive 

imperfection loaded mechanically and thermally with negative temperature gradient 
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Krzysztof Magnucki1, Ewa Magnucka-Blandzi2 

 
 
Abstract 
The work is devoted to the mathematical modeling of a three-layer beam. A generalization of the 
"broken-line" hypothesis describing the displacement field is proposed and used to analyze the problem 
of dynamic stability. Based on Hamilton's principle, equations of motion are obtained. Then this system 
of two differential equations is approximately solved. In this way, the fundamental natural frequency 
and two unstable regions are obtained. 
 
1. Introduction 
The stability and free vibrations of layered beams were the subject of many scientific and research 
works. Yang et al. 2005 studied the vibration and dynamic stability of a traveling sandwich using the 
finite element method. The damping layer was assumed to be linear viscoelastic and almost 
incompressible. Based on the numerical results, it was shown that the constrained damping layer 
stabilizes the traveling sandwich beam. Ray and Kar 1995 presented parametric instability of a three-
layered symmetric sandwich beam subjected to a periodic axial load. Nine different boundary conditions 
were taken into account. The effect of shear parameter on the static buckling loads was considered, 
besides, the effects of shear parameter, core thickness parameter on the regions of parametric 
instability were studied. YiYeh et al. 2004 studied the dynamic stability problem of a sandwich beam 
with a constrained layer and an electrorheological fluid core subjected to an axial dynamic force. Effects 
of the natural frequencies, static buckling loads and loss factors on the dynamic stability behavior of the 
sandwich beam were investigated. Moreover, the instability regions of the sandwich beam were 
calculated using the finite element method and the harmonic balance method. Awrejcewicz et al. 2017 
developed the mathematical model of three-layered beams based on the hypothesis of the Grigolyuk–
Chulkov and the modified couple stress theory. The layers motions on the micro- and nano-scales were 
included. The Hamilton's principle yielded the equations of motion as well as the boundary/initial 
conditions regarding beams displacement. Smyczynski et al. 2017 considered the stability analysis of a 
simply supported layered beam. The beam consists of two faces, a core and two binding layers between 
the faces and the core. The nonlinear hypothesis of the cross section deformation of the beam was 
formulated. Based on the Hamilton's principle the system of four stability equations is derived. Then the 
critical loads, free vibrations and unstable regions were determined. Grygorowicz et al. 2016 presented 
the mathematical modelling of static and dynamic stability of a simply supported three-layered beam 
with a metal foam core. The field of displacements was formulated using the broken line hypothesis and 
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the proposed nonlinear hypothesis. The equations of motion are derived using Hamilton’s principle. 
Critical loads, unstable regions, natural frequencies of the beam, static and dynamic equilibrium paths 
were calculated analytically and numerically verified. Magnucka-Blandzi and Magnucki 2018 assumed 
the applicable hypothesis of deformation of the plane cross section for modelling of a simply supported 
sandwich beam under three-point bending. The analytical model of the beam considering the shear 
effect of the faces is reduced to the classical sandwich beam described by two differential equations of 
equilibrium. 
The subject of the study is a simply supported three-layer beam of length 𝐿, width 𝑏 and total depth ℎ 
subjected to a pulsating axial force 𝐹 (Fig. 1).  

 

 
Figure 1: Scheme of the beam subjected to a pulsating axial force  

 
The individual hypothesis-theory of deformation of the plane cross section is assumed for modelling of 
the beam with consideration of the shear effect in the layers.  
 
2. Mathematical model of the beam 
A non-linear hypothesis of cross-section deformation is assumed. This hypothesis is a generalization of 
the broken line hypothesis (Fig. 2).  
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Figure 2: Scheme of deformation of the plane cross section of the three-layer beam  

The total height of the beam equals 
ℎ = 2ℎ𝑓 + ℎ𝑐 , 

where: ℎ𝑓, ℎ𝑐 – thicknesses of the outer layers and the middle layer (core), respectively. 

Moreover, the following notation is introduced: 
𝜂 = 𝑦 ℎ𝑐⁄   – dimensionless coordinate, 
𝑢̃1(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡) ℎ𝑐⁄   – dimensionless displacement, 
𝜒𝑓 = ℎ𝑓 ℎ𝑐⁄   – parameter, 

𝑘𝑓 ∈ ⟨0,1⟩ – coefficient (real number), 
𝛽𝑐 ∈ ⟨0,1⟩  – coefficient (real number), 
𝐸𝑓 , 𝐸𝑐 – Young’s modules of facings and core, 

𝜈𝑓 , 𝜈𝑐 – Poisson’s ratio of facings and core, 

𝜌𝑓 , 𝜌𝑐 – mass densities of facings and core. 

So, the total mass density of the beam 
𝜌𝑏 = 𝜌𝑐 + 2𝜌𝑓𝜒𝑓 . 

Based on the assumed hypothesis, longitudinal displacements are formulated separately for each layer, 
i.e. for:  

 upper layer: −(1 + 2𝜒𝑓) 2⁄ ≤ 𝜂 ≤ −1 2⁄    

𝑢(𝑢)(𝑥. 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
+ 𝑓𝑑

(𝑢)(𝜂)𝑢̃1(𝑥, 𝑡)] , #(1)  

where:  

𝑓𝑑
(𝑢)(𝜂) = {− [3 − 4(

𝜂

1 + 2𝜒𝑓
)

2

]
𝜂

1 + 2𝜒𝑓
}

𝑘𝑓

, 

 middle layer (core): −1 2⁄ ≤ 𝜂 ≤ 1 2⁄   

𝑢(𝑐)(𝑥, 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
− 2𝑓𝑑

(𝑐)(𝜂)𝑢̃1(𝑥, 𝑡)] , #(2)  

where:  

𝑓𝑑
(𝑐)(𝜂) = 𝑐𝑓

3 − 4𝛽𝑐𝜂
2

3 − 𝛽𝑐
𝜂,     𝑐𝑓 =

1 + 6(1 + 𝜒𝑓)𝜒𝑓

(1 + 2𝜒𝑓)
3 , 

 lower layer: 1 2⁄ ≤ 𝜂 ≤ (1 + 2𝜒𝑓) 2⁄   

𝑢(𝑙)(𝑥. 𝑦, 𝑡) = −ℎ𝑐 [𝜂
𝜕𝑣

𝜕𝑥
− 𝑓

𝑑
(𝑙)(𝜂)𝑢̃1(𝑥, 𝑡)] ,#(3)  

where:  

𝑓𝑑
(𝑙)(𝜂) = {[3 − 4(

𝜂

1 + 2𝜒𝑓
)

2

]
𝜂

1 + 2𝜒𝑓
}

𝑘𝑓

. 

A linear relationship between strains and displacements is assumed, so the strains separately for each 
layer are as follows: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
,       𝛾𝑥𝑦 =

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

ℎ𝑐𝜕𝜂
. 

Then, taking into account the above and the expressions (1)–(3), the strains are determined. 
Hence the stresses are given by the formula for: 
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 upper layer: −(1 + 2𝜒𝑓) 2⁄ ≤ 𝜂 ≤ −1 2⁄    

𝜎𝑥
(𝑢)

= 𝐸𝑓 ⋅ 𝜀𝑥
(𝑢)
,       𝜏𝑥𝑦

(𝑢)
=

𝐸𝑓

2(1 + 𝜈𝑓)
⋅ 𝛾𝑥𝑦

(𝑢)
, 

 middle layer (core): −1 2⁄ ≤ 𝜂 ≤ 1 2⁄   

𝜎𝑥
(𝑐)
= 𝐸𝑐 ⋅ 𝜀𝑥

(𝑐)
,       𝜏𝑥𝑦

(𝑐)
=

𝐸𝑐
2(1 + 𝜈𝑐)

⋅ 𝛾𝑥𝑦
(𝑐)
, 

 lower layer: 1 2⁄ ≤ 𝜂 ≤ (1 + 2𝜒𝑓) 2⁄   

𝜎𝑥
(𝑙)
= 𝐸𝑓 ⋅ 𝜀𝑥

(𝑙),       𝜏𝑥𝑦
(𝑙) =

𝐸𝑓

2(1 + 𝜈𝑓)
⋅ 𝛾𝑥𝑦

(𝑙). 

Then,  

 the elastic strain energy  

𝑈𝜀 =
1

2
𝑏ℎ𝑐 ⋅ 

⋅ ∫

{
 
 

 
 

𝐸𝑓  ∫ {[𝜀𝑥
(𝑢)
]
2
+

1

2(1 + 𝜈𝑓)
[𝛾𝑥𝑦
(𝑢)
]
2
}𝑑𝜂

−
1

2

−
1+2𝜒𝑓

2

+ 𝐸𝑐  ∫ {[𝜀𝑥
(𝑐)
]
2
+

1

2(1 + 𝜈𝑐)
[𝛾𝑥𝑦
(𝑐)
]
2
} 𝑑𝜂

1

2

−
1

2

𝐿

0

+ 𝐸𝑓  ∫ {[𝜀𝑥
(𝑙)
]
2
+

1

2(1 + 𝜈𝑓)
[𝛾𝑥𝑦
(𝑙)
]
2
}𝑑𝜂

1+2𝜒𝑓

2

1

2 }
 
 

 
 

𝑑𝑥, 

 the kinetic energy 

𝑇 =
1

2
(2𝜌𝑓𝜒𝑓 + 𝜌𝑐)𝑏ℎ𝑐∫(

𝜕𝑣

𝜕𝑡
)

2

𝑑𝑥

𝐿

0

, 

 the work of the load 

𝑊 =
1

2
𝐹∫(

𝜕𝑣

𝜕𝑥
)

2

𝑑𝑥

𝐿

0

 

are derived. 
Based on the Hamilton’s principle 

𝛿 ∫[𝑇 − (𝑈𝜀 −𝑊)] 𝑑𝑡

𝑡2

𝑡1

= 0, 

two differential equations of motion are obtained in the following form  
 

{
 
 

 
 𝜌𝑏𝑏ℎ𝑐

𝜕2𝑣

𝜕𝑡2
+ 𝐸𝑐𝑏ℎ𝑐

3 (𝐶𝑣𝑣
𝜕4𝑣

𝜕𝑥4
− 𝐶𝑣𝑢

𝜕3𝑢̃1
𝜕𝑥3

) +
𝜕2𝑣

𝜕𝑥2
𝐹(𝑡) = 0

𝐶𝑣𝑢
𝜕3𝑣

𝜕𝑥3
− 𝐶𝑢𝑢

𝜕2𝑢̃1
𝜕𝑥2

+ 𝐶𝑢
𝑢̃1(𝑥, 𝑡)

ℎ𝑐
2 = 0

,#(4)  

where:  
𝐶𝑣𝑣, 𝐶𝑣𝑢, 𝐶𝑢𝑢, 𝐶𝑢  – dimensionless coefficients. 

 
2. Natural frequency and unstable regions 
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The system of two differential equations (4) is approximately solved with the use of two assumed 
functions:  

𝑣(𝑥, 𝑡) = 𝑣𝑎(𝑡) sin (𝜋
𝑥

𝐿
) , 𝑢̃1(𝑥, 𝑡) = 𝑢̃1𝑎(𝑡) cos (𝜋

𝑥

𝐿
) , #(5)  

where: 𝑣𝑎(𝑡), 𝑢̃1𝑎(𝑡) – functions of the time t.  
The loading force – the pulsating force is in the following form  

𝐹(𝑡) = 𝐹𝑚 + 𝐹𝑎 cos(𝜃𝑡) , #(6)  

where: 𝐹𝑚, 𝐹𝑎 , 𝜃 – mean value, amplitude and frequency of the force, respectively.  
Substituting the functions (5) and (6) into the equations (4), and after simply transformation, one 
obtains the Mathieu’s equation  

𝑑2𝑣𝑎
𝑑𝑡2

+𝛺2[1 − 2𝜇 cos(𝜃𝑡)]𝑣𝑎(𝑡), #(7)  

where:  

𝛺2 = 𝜔2(1 − 𝛼𝑚), 𝜇 =
1

2

𝛼𝑎
1 − 𝛼𝑚

, 𝛼𝑚 =
𝐹𝑚
𝐹𝐶𝑅

, 𝛼𝑎 =
𝐹𝑎
𝐹𝐶𝑅

, 

𝜔2 = (
𝜋

𝐿
)
4

(1 − 𝐶𝑠𝑣)
𝐶𝑣𝑣𝐸𝑐ℎ𝑐

2

𝜌𝑏
, 

𝐹𝐶𝑅 = (
𝜋

𝐿
)
2

(1 − 𝐶𝑠𝑣)𝐶𝑣𝑣𝐸𝑐𝑏ℎ𝑐
3, 

𝐶𝑠𝑣 = max
𝛽𝑐, 𝑘𝑓

{
𝜋2

𝐶𝑣𝑣
⋅

𝐶𝑣𝑢
2

𝜋2𝐶𝑢𝑢 + 𝜆𝑐
2𝐶𝑢

} , 𝜆𝑐 =
𝐿

ℎ𝑐
. 

Using the above notations, the unstable regions can be described by the following inequalities: 

 the first unstable region 

2Ω√1 − 𝜇 ≤ 𝜃 ≤ 2Ω√1 + 𝜇, 

 the second unstable region 

Ω√1 − 2𝜇2 ≤ 𝜃 ≤ Ω√1 +
1

3
𝜇2. 

 
3. Numerical calculations 
The detailed studies are realized for the exemplary family of the three-layer beams. The stable and 
unstable regions are calculated for the three load cases – pulsating forces. 
The geometric dimensions of the beams are as follows: 

ℎ = 20 mm  – total height, 
𝐿 = 600 mm  – length, 
𝜆 = 𝐿/ℎ = 30  – relative length, 

and the following mechanical properties are taken into account: 
𝐸𝑓 = 65 000 MPa  – Young’s modulus in facings, 

𝜈𝑓 = 0.33  – Poisson’s ratio in facings, 

𝐸𝑐 = 1 200 MPa  – Young’s modulus in the core, 
𝜈𝑐 = 0.3  – Poisson’s ratio in the core, 

𝜌𝑓 = 2 600 kg/m3  – mass density in facings, 

𝜌𝑐 = 350 kg/m
3  – mass density in the core. 

The fundamental natural frequency 𝜔 and dimensionless critical load  

𝐹̃𝐶𝑅 =
𝐹𝐶𝑅
𝐸𝑐𝑏ℎ𝑐

= (
𝜋

𝐿
)
2

(1 − 𝐶𝑠𝑣)𝐶𝑣𝑣𝐸𝑐𝑏ℎ𝑐
3 
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are calculated and presented in Table 1. 
 

Table 1: Dimensionless parameters, natural frequencies and dimensionless critical loads (𝜆 = 30)  

𝜒𝑓  
1

18
 

2

16
 

3

14
 

4

12
 

5

10
 

𝛽𝑐  0.1097 0.06230 0.04127 0.02798 0.01847 
𝑘𝑓 0.07041 0.04187 0.03263 0.02862 0.02698 

𝐶𝑠𝑣 0.03488 0.05871 0.07476 0.08358 0.08552 
𝜔 [1/s]  881.8 976.3 987.5 969.9 941.2 
𝐹̃𝐶𝑅  0.01359 0.02318 0.03038 0.03575 0.03971 

 
Three load cases (LC-1, LC-2, LC-3) are taken into account – according to the parameter values given in 
Table 2. 
 

Table 2: Three load cases 

Load case LC-1 LC-2 LC-3 

𝛼𝑎 0.5 1.0 1.5 
𝛼𝑚 0.5 0.25 0.1 

𝜇 
1

2
 

2

3
 

5

6
 

 
Then, the following unstable regions are determined for: 

 first load case 
o the first unstable region 

𝜔 ≤ 𝜃 ≤ √3 ⋅ 𝜔, 
o the second unstable region 

1

2
⋅ 𝜔 ≤ 𝜃 ≤

1

2
√
13

6
⋅ 𝜔, 

 
Figure 3: Unstable regions (LC-1) 

 second load case 
o the first unstable region 

𝜔 ≤ 𝜃 ≤ √5 ⋅ 𝜔, 
o the second unstable region 
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√3

6
⋅ 𝜔 ≤ 𝜃 ≤

√31

6
⋅ 𝜔, 

 
Figure 4: Unstable regions (LC-2) 

 third load case 
o the first unstable region 

√15

5
⋅ 𝜔 ≤ 𝜃 ≤

√165

5
⋅ 𝜔, 

o the second unstable region does not exist. 

 
Figure 5: Unstable regions (LC-3) 

 
4. Conclusions 
The generalized "broken line" hypothesis allowed to model a three-layer beam taking into account the 
shear effect. Critical force, fundamental natural frequency and unstable regions are the result of the 
obtained and solved system of differential equations. Detailed analysis identified unstable regions, in 
particular only one existing. 
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The use of the Overall Imperfection Method for fire design situation 
 

József A. Szalai1, Samer Nemer2, Ferenc  Papp3 
 
 
Abstract 
The Overall Imperfection Method (OIM) is a highly universal and robust method for the assessment of 
the global stability resistance of steel members with any load and support conditions. The method uses 
the relevant elastic critical buckling mode shape as equivalent initial geometrical imperfection and gives 
a universal procedure for the determination of the proper amplitude. This procedure takes into 
consideration the appropriate buckling curves connected to a classification procedure of the buckling 
mode, accordingly gives completely consistent results with the reduction factor based design method 
where the same buckling curves are used. The assessment (final check) of the global stability resistance 
is performed by second order evaluation of the properly imperfect member, so the OIM directly 
calculates the geometrical nonlinearities. Therefore the methodology is completely applicable also in 
fire design situation since this limit state is characterized by the high nonlinearity. The key issue is the 
determination of the amplitude of the equivalent geometric imperfection. The method follows the same 
procedure as used for normal temperature but using the special buckling curves specified for the fire 
design situation. Applying the equivalent geometric imperfection, the second order analysis is 
performed with the reduced elastic modulus. By this the result directly includes the effect of the 
significantly larger deformations caused by the elevated temperature. This methodology is completely 
consistent with the methodology of conventional reduction factor based buckling design, also in case of 
elevated temperature. Moreover, it can be used for any situations with complex load interactions or 
irregular support conditions. The paper discusses briefly the background of the OIM in case of fire 
design. Moreover, the steps of the application will be described, and an illustrative example will be 
presented in which the OIM result is compared to the result of the EN 1993-1-2 and GMNIA. The 
largescale validation of the presented method for irregular structural members with elevated 
temperature is going on, it is out of the scope of this paper.  
 
1. Introduction 
The Overall Imperfection Method is the generalization of the Unique Global and Local Imperfection 
Method (UGLI) which was introduced by EC3-1-1 (EN1993-1-1 2019) and published by Chladný (Chladný 
et al. 2013). The method is valid for structural members subjected to flexural buckling. The UGLI was 
extended by Agüero for members subjected to lateral-torsional buckling (Agüero et al. 2015), and by 
Papp for the coupled buckling of flexural and lateral-torsional buckling (Papp 2016). The most detailed 
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3 Full Professor, Széchenyi István University, <pappfe@sze.hu> 
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description of the generalised OIM was published by Szalai and Papp (Szalai et al. 2019). The OIM was 
used for irregular structural members and simple portal frames in the paper published by Papp et al. 
2019.  
In this paper the OIM is used to design structural members subjected to elevated temperature. The 
method utilizes the results of the Linear Buckling Analysis (LBA), namely the elastic critical load factor, 
the buckling mode shape and the second order internal moments induced by the modal geometric 
imperfection. The methodology assumes that any complex global buckling mode can be classified into 
one of the finite number of fundamental buckling modes (e.g. flexural buckling or lateral-torsional 
buckling, etc.). Furthermore it is also assumed that there are calibrated standard buckling curves for all 
the fundamental  buckling modes, for elevated temperatures and they can be used within the proposed 
methodology to ensure the required reliability level of design.  
The procedure of the OIM consists of two basic steps (Fig. 1): 
(1) a universal Transformation which converts the examined structural member with a certain complex 
buckling problem into a properly defined equivalent reference member (ERM) which is a prototype 
model of the corresponding fundamental buckling mode – this is the ultimate generalization of the 
effective length (or equivalent member) method to any buckling problem (Szalai et al. 2019); 
(2) a closed-form analytical solution for the equivalent reference member which is based on the 
standard buckling curves corresponding to the equivalent fundamental buckling mode (EN1993-1-2, 
2005) – this is the ultimate generalization of the beam-column buckling strength interaction equations. 
 
 

Phase 1 

Structural Member 

Phase 2 

Transformations 

Phase 3 

Analytical solution 

Standard Buckling 

Curves 

 

Linear Elastic Analysis 

Linear Buckling Analysys 

 

 

Structural Member → ERM 

 

Equivalent Reference 

Member (ERM) 

 

   

Elastic Stability Formula 

 

 

Imperfection Factors 

Checking  

Cross-Sectional Resistance 

 

ERM→ Structural Member 

 

Equivalent Amplitude 

 

Figure 1: The general sheme of the OIM 

The OIM uses the traditional imperfection factors for the calculation of the equivalent amplitude for the 
buckling mode based geometrical imperfection. Due to this imperfection the checking of the cross-
section utilization with second order analysis (GNA) is equivalent to the checking of the global buckling 
mode.   
In the paper first the main steps are explained, then the steps of the complete OIM is summarized. 
Finally the application of the method is presented by a simple example. The paper assumes double 
symmetric hot-rolled or welded I and H cross-sections, but it should be noted that the methodology can 
be extended to other types of cross-sections (mono-symmetric and asymmetric).   
 
2. The basic steps of the OIM 
This section covers the description and explanation of the basic steps of the OIM as well as presents the 
step-by-step procedure of the complete method. The application of the method is illustrated by a simple 
example where the result of the method is compared to the result of the geometrically and materially 
nonlinear analysis with imperfections (GMNIA).  

2.1 The ‘Structural Member → ERM’ transformation 



 3 

The details of the model transformation at normal temperature are described in Section 2 of the paper 
published by Szalai and Papp (Szalai et al. 2019). The aim of this step is as follows: 

• determine the location of the equivalent point of the structural member 

• classify the buckling mode through the equivalent point 

• calculate the equivalent length of the reference member  
The reference member in general is a straight, prismatic and simply supported member with uniform 
cross-section subjected to uniformly distributed compression force and/or bending moments. The aim is 
to determine the equivalent reference member (ERM) for the examined problem. The ERM has certain 
cross-section, member length, member force and moments and buckling mode. To determine these 
properties the location of the equivalent point is needed. The equivalent point (ep) is that cross-section 
along the structural member where the cross-sectional utilization (applying conservative interaction 
formula) takes the highest value, 
 

(1)
 

 
where the Usec,cr  cross-sectional utilization is calculated from the internal axial force and moments due 
to the deformation of the buckling mode shape with arbitrary amplitude. Once the equivalent point has 
been determined the cross-section of the ERM will be the same as the cross-section of the structural 
member at the equivalent point. Moreover, the uniformly distributed axial force and moments of the 
ERM will be the same as the axial force and moments calculated at the equivalent point of the structural 
member. For the length of the equivalent member the proper fundamental buckling mode can be 
selected using Table 1.  

Table 1: The fundamental Buckling Mode Classes (BMC) – only in case of double symmetric cross-sections 

BMC Cross-section at 
the ep 

Active load 
components 

at the ep 

Buckling mode shape 
displacement(s)* at 

the ep 

Buckling mode type 

BMC_01 

doubly 
symmetric 

NI wcr  flexural buckling about strong axis (FB-y) 

BMC_02 NI vcr  flexural buckling about weak axis (FB-z) 

BMC_03 NI cr  torsional buckling (TB) 

BMC_04 MI
y vcr;cr  lateral-torsional buckling (LTB) 

BMC_05 NI; MI
y vcr;cr  coupled buckling (FB-z + LTB) 

* v and w denote the displacements in directions of the principle axes of the cross-section, while  denotes the  
   rotation around the member axis 

 
Since the cross-section and the loading at the equivalent point of the structural member are identical to 
the ones of the ERM, the equality of the elastic critical load factors is necessary. For the elastic critical 
load of the ERM there are well-known analytical formulas for each fundamental buckling modes (e.g. 
see Trahair, 1993) from which the member length of the ERM can be calculated using the elastic critical 
load equivalency. By this the ERM is fully defined.    
 
2.2 The solution of the ‘Equivalent Reference Member’ 
Once the ERM is completely defined, the specific buckling solution gives the necessary information 
which is needed for the solution of the buckling problem of the structural member. The analytical 
solution of the ERM is based on the generalized Ayrton-Perry formula. The key parameter of the Ayrton-
Perry formula is the imperfection factor which is responsible for the correct consideration of the second 

ep)x(Umax)ep(U crsec,crsec,     →=
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order effect and which is the base for the standard safety calibration. The APF based imperfection factor 
for coupled flexural and lateral-torsional buckling at elevated temperature can be written as follows 
(Szalai, 2017): 

     

  (2) 
 

where N, and M, are the standard imperfection factors corresponding to the buckling modes for 

flexural buckling and lateral-torsional buckling at elevated temperature respectively, sec,N, sec,M and 

sec,NM are the cross-sectional resistance multiplication factors taking the buckling active loads into 
consideration, and 𝜇 is a modifying factor dependent on the pure elastic critical loads of the equivalent 
reference member (Szalai, 2017).  
The imperfection factors are determined in the EN 1993-1-2 for all the classes of cross-sections. 
However for class 3 and class 4 cross-sections the authors suggest using the novel results published by 
Zhao and others (Zhao et al. 2014), see Table 2 and Table 3.      

 
Table 2: Imperfection factor for flexural buckling at elevated temperature 

 
parameter 

class of cross-section 

class 1 & class 2 
(EN1993-1-2) 

class 3 & class 4 
(Zhao at al. 2014) 

slenderness  
 
 

 

imperfection coefficient  
 
 

 

imperfection factor for 
AP formula 

 
 

 
Table 3: Imperfection factor for lateral-torsional buckling at elevated temperature 

 
parameter 

class of cross-section 

class 1 & class 2 
(EN1993-1-2) 

class 3 & class 4 
(Zhao at al. 2014) 

slenderness 
 

  

imperfection coefficient  
 
 

 

imperfection factor for 
AP formula 

 
 

 

2.3 The ‘ERM →  Structural Member’ transformation 
In the OIM the equivalent amplitude is to be determined for the applied equivalent geometrical 

imperfection with the cr shape of the complex buckling mode of the structural member. The equivalent 
geometrical imperfection of the examined structural member takes the following formula: 
 

(3) 

where cr  is the critical load factor of the structural member, the cr  is the shape of buckling mode with 

arbitrary amplitude, and the sec are the cross-sectional load amplification factors, they are linearly 
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dependent on the actual amplitude (sec,a relates to the buckling active loads, and sec,cr relates to the 
buckling deformation).   
 
2.4 Checking global buckling resistance 
The final step of the OIM is running a second order analysis and cross-section checking on the examined 

structural member with the cr,eq  equivalent geometrical imperfection. In this step the U cross-sectional 
utilization should be equal or less than 1.0. The U can be calculated as follows: 
 

• class 1 and class 2 cross-sections: 
 
     (4) 
 

• class 3 and class 4 cross-sections: 
 

(5) 
 
 

where the cross-section properties denoted by ‘eff,new’ can be calculated according to the research 
papers published by Zhao and others, Couto and others, Vila Real and others (Zhao et al 2014; Couto et 
al. 2014; Couto et al. 2015).  
 
3. The step-by-step procedure of the OIM at elevated temperature 
The step-by-step procedure of the OIM at design situation of elevated temperatures is summarized in 
Table 4. 

Table 4: The steps of the OIM at design situation of elevated temperatures 

Numerical calculations of the examined Structural Member 

Step 1 Structural analysis of the perfect structural member with material properties at elevated temperature 
1.1 Linear Elastic Analysis (LA). 

1.2 Linear Buckling Analysis (LBA)  

Model transformation: Structural Member → ERM 

Step 2 Determination of the equivalent point 
2.1 Calculation of the internal force and moments due to the relevant buckling mode shape. 

2.2 Calculation of the cross-section resistances along the member. 

2.3 Calculation of the linear cross-section utilization (sec,cr) 

2.4 Determination of the equivalent point. 

Step 3 Buckling mode classification through the equivalent point 
3.1 Determination of the buckling active loads. 

3.2 Classification of the buckling mode into one fundamental case, based on Table 1. 

Step 4 Equivalent length of the reference member 
Calculation of the length of the ERM from the equality of the critical load factors. 

Analytical solution of the ERM 

Step 5 Equivalent imperfection factor 
Calculation of the equivalent standard imperfection factor of the ERM considering the BMC – Eq.(2) 

Step 6 Calculation of the buckling-active load multiplication factor (sec,a) 

Model transformation: ERM → Structural Member 

Step 7 Equivalent geometrical imperfection 
7.1 Calculation of the equivalent scale factor (eq) 

7.2 Calculation the equivalent geometrical imperfection as the scaled buckling mode shape – Eq. (3) 

Final  check 

Step 8 8.1 Geometrically Nonlinear Analysis with Imperfection (GNAI) 

8.2 Check of cross-sectional utilizations  using conservative interaction formula  - Eq.(4) or Eq.(5) 
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4. Illustrative example 
To understand the OIM more easily the application of the method is illustrated in this Section. Fig. 2 
shows a simple supported beam-column member with class 4 welded I cross-section (flanges: 240-6; 
web: 288-4) and loads which causes uniformly distributed internal compressive axial force and bending 
moment along the structural member. The steel grade of the member is S235 and the elevated 
temperature is 5000C.   

 
Figure 2: The structural model of the examined structural member (beam-column) 

It is important to note that the examined structural member and the relevant ERM are the same in this 
example. At the 5000C elevated temperature the steel material has the following properties: yield 

strength fy, =183.3 N/mm2, elastic moduli E =126000 N/mm2 and shear moduli G =48462 N/mm2.    
It is noted that the OIM is a computer-oriented procedure, consequently the detailed presentation of 
the example would extend beyond the size of this paper. However, to help the reproduction of the 
calculation the step-by-step procedure are summarized in the Table 6, while the Table 5 contains the 
most important notes to the steps, helping the easier understanding.  
 
5. Conclusions 
The paper applied the Overall Imperfection Method (OIM) for global stability design of steel members at 
elevated temperature. For this the basic buckling curves of EN 1993-1-2 was used with modifications for 
class 3 and class 4 cross-sections published in the research report of Zhao and others (Zhao et al. 2014). 
In the Table 7 the buckling load factors are compered calculated with GMNIA, interaction design formula 
of EN1993-1-2 4.2.3.2 and the presented OIM. It can be seen that the OIM is very close to the GMNIA 
result.  
 

Table 5: Notes to the steps in Table 6 
Step 1.1 
Step 1.2 

The analysis may be evaluated on the structural member with material properties at elevated temperature. 

Step 2.1 These forces are computed from the modal deformation (strains) of the structural member. 

Step 2.2 The cross-sectional utilizations are calculated using the internal moments calculated in the Step 2.1 with 
elastic cross-section properties. 

Step 2.3 The load multiplication factor is the reciprocal of the linear sum of the utilizations calculated in the Step 2.2. 

Step 2.4 In this example the location of the equivalent point was known (middle of the member). In general this point 
should be find discussing the utilization distribution along the structural member, given in Step 2.3  

Step 3.1 The buckling active forces and bending moments are those first order ones that directly cause the buckling 
(usually the first order Mz moment and all the second order ones are passive) . 

Step 4 In this example the equivalent length is equal to the member length since the examined member itself is the 
equivalent reference member. In other cases the formulas of theory of elastic stability can be used.  

Step 5 The calculation of these parameters is based on the EN1993-1-2 and the research report by Zhao et al. 2014. 
In any case the elastic cross-sectional properties were used. 

Step 6 In this case the buckling-active linear multiplication factor is equal to the sec,NM factor calculated in in the 
Step 5. 

Step 8.2  The Integrated effective cross-sectional model was used, following the research report by Zhao et al. 2014.  



 7 

Table 6: The results of the step-by-step OIM calculation in case of the example in Fig. 2 

Steps of OIM Notation Dimension Value 

Step 1.1 Linear elastic analysis (LA)  
- Axial force (in the equivalent point given in Step 2.4) 
- Bending moment (in the equivalent point given in Step 2.4) 

 
NI 
MIy 

 
kN 
kNm 

 
114.0 
15.59 

Step 1.2 Linear buckling analysis (LBA) 
- Elastic critical load factor 
- Amplitude of buckling shape (in the center of cross-section) 

 

cr 

vcr.max 

  
 
mm 

  
2.380 
37.62 

Step 2.1 Internal forces and moment due to buckling mode shape 
- Bending moment (in the equivalent point given in Step 2.4) 
- Bimoment (in the equivalent point given in Step 2.4) 

 
Mcr

z 
Bcr 

 
kNm 
kNm2 

 
13.07 
1.580 

Step 2.2 Cross-section utilization (in the equivalent point given in Step 2.4) 
- Due to bending around minor axis 
- Due to bimoment 

 
Ucr,Mz 

Ucr,B 

 
kNm 
kNm2 

 
0.854 
0.702 

Step 2.3 Linear load multiplication factor  (in the equivalent point) sec,cr   0.642 

Step 2.4 Location of the equivalent point (measured from the member end) ep mm 3000 
Step 3.1 Buckling-active internal forces and moments   

- Axial force 
- Bending moment around the major axis 

 
Na(ep) 
May(ep) 

 
kN 
kNm 

 
114.0 
15.59 

Step 3.2  Classification of the buckling mode “Coupled FB and LTB” 
Step 4 Equivalent length of the ERM  Leq mm  5995 

Step 5 Equivalent imperfection factor for ERM 

- Slenderness for flexural buckling 

 

- Slenderness for lateral-torsional buckling 

  

- Imperfection coefficients 

 

- Imperfection factor    
 

- Cross-sectional resistance multiplication factors 

  

 

- Modifying factor    

- Equivalent imperfection factor 

 

z 

z, 

LT 

LT, 

z 

LT 

N, 

M, 

sec,N 

sec,M 

sec,NM 

𝜇 

NM, 

  

0.740 

0.844 

0.682 

0.778 

0.550 

0.650 

0.464 

0.506 

6.438 

5.503 

2.976 

0.954 

0.474 

Step 6 Buckling-active linear multiplication factor (sec,NM in step 5) sec,a  2.976 

Step 7.1 Equivalent scale factor eq  0.263 

Step 7.2 Equivalent amplitude cr,eq mm 9.159 

Step 8.1 Internal forces and moments due to second order analysis with 
equivalent geometric imperfection (GNIA) in the critical point 
- axial compression 
- bending moments   

 
- additional bending moments due to shifting of centroid 
 
- bimoment 

 
 

NII
fi,Ed, 

MII
y,fi,Ed, 

MII
z,fi,Ed, 

MII
y,fi,Ed, 

MII
z,fi,Ed, 

BII
fi,Ed, 

 

 

kN 

kNm 

kNm 

kNm2 

kNm 

kNm 

 

  

114.0 

16.35 

3.775 

2.212 

1.379 

0.392 

Step 8.2 Cross-section utilization in the critical cross-section  U*  1.019 

*The applied ‘eff,new’ cross-sectional properties: A=2600mm2;  Wy=346646mm3; Wz=86298mm3; W=13.22106mm4 
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Table 7: Compering the buckling load factors computed with different methods 

method b 

GMNIA (using Abaqus software) 

 

 
 
 
 
 
 

1.000 

EN1993-1-2 4.2.3.2 1.298 

Overall Imperfection Method (OIM) 1.019 
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Efficient application of the Reduced Stress Method for built-up I sections 
 

Bálint Vaszilievits-Sömjén1 
 
 
Abstract 
Reduced Stress Method is an alternative to the effective width method of EN 1993-1-1. Because of 
its built-in conservatism it is less used in practice for the design of building structures. The proposed 
new application reduces this conservatism. Reduction is obtained using the standard plate buckling 
curves where the plate slenderness is calculated with the help of linear buckling analysis. The 
buckling shape relevant to each plates of the cross-section is selected with a deformation energy-
based buckling sensitivity analysis. The method is ready to be built into computer software which 
can handle shell finite elements and perform linear buckling analysis. 
 
 
1. Introduction 
The most often used Eurocode design approach for thin-walled sections made of plates subject to 
local buckling uses beams with effective cross sections. Effective cross section properties are 
calculated based on the normal stresses parallel to the length of the member, disregarding the 
presence of other stress components. Using the main Eurocode logic, effective cross section 
properties are calculated separately for the effect of the main internal force types as normal force, 
bi-axial bending moment and warping moment. For the last Eurocode doesn’t require to calculate 
effective properties. When effective cross section properties are calculated it is assumed, that the 
cross-section is uniform and also the stresses remain constant along the length, there is no any 
stress gradient on the member. Additionally, it is also assumed, that the plates forming the section 
are connected to each other with hinges, therefore no any interaction between the individual plates 
of the cross section is assumed. The effective cross-section approach cannot consider the presence 
of openings in the section and also the handling of transverse stiffeners is not possible. The effect of 
transverse forces must be considered additionally. 
In case the conditions for the application of effective cross sections are not met, the engineer can 
use plate elements instead of beams, but the evaluation of limit state requirements is difficult as 
only deformations and stress components are available as a result of analysis. A consistent design 
method using the results obtained from plate elements is not available at the moment for practicing 
engineers. 
Eurocode EN 1993-1-5 includes a design method based on the use of plate members, called Reduced 
Stress Method. This method is mainly used for bridge structures, but not for usual building 
structures, mainly due to lack to software implementation and its conservatism. When the Reduced 
Stress Method is used for the design of beams with welded I sections, using slender webs, the 
obtained ultimate loads are generally much lower than the ones from a design based on the use of 
effective cross section properties. This is known, as the method estimates section resistances based 
on the buckling properties of the weakest plate of the cross section. Additionally, the method 
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described in Eurocode uses analytical formulas to calculate the critical stresses of the plates, 
assuming hinges along their connections.  
 
 
2. Literature review 
Schafer (2008) proposed to use the minimum value from the signature curve, in the zone of 
wavelengths representing local buckling, found by finite strip method for cold-formed members, 
when the cross-section elastic local buckling stress is determined. This approach works well in 
practice for typical cold-formed sections but becomes conservative when the slenderness of plates 
of the cross-section are very different.  Seif (2010) proposed formulas to calculate the full cross-
section elastic stress for hot-rolled sections under pure compression or pure bending. Gardner 
(2019) proposed an improved elastic buckling stress for the full cross-section, for the combination of 
axial compression and bending. All these researchers aimed to provide a single elastic stress for the 
full cross-section, to be used with DSM or other methods. 
EN 1993-1-3 recommends using the minimum local buckling stress of the cross section and use it to 
determine effective cross section properties. Brune (2000) proposed a method to calculate elastic 
critical stress for the individual plates, considering their interaction, in order to calculate effective 
cross section properties. 
 
 
3. Description of the proposed method 
The goal of this practical method is to make possible an alternative modelling of a member besides 
the traditional use of beam finite element. In order to provide design evaluation the concept of the 
Reduced Stress Method will be followed. 
Is it has already been stated in the Introduction, for application where dominantly a beam-column 
like behaviour exists, the Reduced Stress Method is rather conservative. The proposed method aims 
to provide improvements, to provide results comparable to the results obtainable with the use of 
effective cross section properties for a beam element, but still keeps the additional advantages the 
shell representation can provide, over a beam representation. 
This method at the present early stage of development concentrates on longitudinal normal stresses 
only (parallel to the axis of the beam representation), transverse normal and shear stresses are 
included but it is assumed, that they will not cause buckling phenomenon and therefore there will be 
no corresponding buckling factors used when the main evaluation formula of Reduced Stress 
Method is used. Additionally, is it assumed, that the vicinity of the analysed part of the structure is 
properly restrained against any kind of global stability failure and therefore only plate like local 
buckling modes are analysed at the moment. No longitudinal stiffeners are allowed at this stage. In 
other words, at this moment the aim is to provide results comparable to those obtained on beam 
elements when effective cross sections are used. 
The proposed method implemented 2 improvements 

- gives an assignment logic of the available buckling modes to each individual plate of the 
beam, based on plate sensitivity analysis 

- gives a modelling technique using reduced thicknesses to successfully apply a modified 
verification formula of the Reduced Stress Method 
  

 
3.1 Plate sensitivity analysis 
A welded I section consists of 3 plates – 2 flanges and a web. When linear buckling analysis is 
performed on the shell representation of the model, as a result many different buckling modes and 
eigenvalues will be obtained. Generally, it is difficult to decide which one to use to determine the 
slenderness of the given plate of the member. In order to facilitate the selection of the right buckling 
modes, the following sensitivity analysis based on strain energy is proposed: 
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- Step 1. once the shape of a buckling eigenmode is known after LBA, the corresponding strain 

energy can be calculated with the following formula Eq. 1: 
 

 𝐸𝑝𝑖 =
1

2
∙ ∑ 𝑣𝑇 ∙ 𝐾𝑠

𝑛 ∙ 𝑣 (1) 

 
where 𝐸𝑝𝑖  is the summed strain energy of plate i forming the member, 𝐾𝑠

𝑛 is the first order 

stiffness matrix of the ‘n’-th finite element of the actual plate and v is the vector of 
displacement at nodes of the same finite element, corresponding to the buckling shape with 
arbitrary scaling.  

 
- Step 2. once the amount of the strain energy of the individual plates is known, a 

contribution indicator can be assigned to each plate with Eq. 2: 
 

 𝑘𝑖 =
𝐸𝑝𝑖

max⁡(𝐸𝑝𝑖)
 (2) 

 
this indicator will assign a value of 100% for the plate with the maximum energy 
contribution and a lower percentage for the other plates less exposed to the deformations 
of the given buckling shape. 
 

The assignment of the given buckling shape to a plate with 100% contribution (called critical plate) is 
obvious, but the assignment to other plates with smaller indicator value is not too easy. As the shell 
model correctly assumes interaction between individual plates of the welded member, plates with 
higher slenderness will be stabilized by plates with lower slenderness or with lower compression 
stresses. These are the restraining plates. This sharing is the reason of the appearance of non-zero 
contribution indicators on restraining plates. Higher the value means a less neglectable consequence 
on the restraining plates. At the moment there is no mathematical explanation readily available for 
the definition of a limit value, but it seems reasonably safe the define it as 20%. This means that as a 
safety precaution, a buckling shape will not be assigned only to the critical plates but also to other 
restraining plate if its contribution indicator passes this limit value, even if there would be another 
buckling shape with a higher critical multiplier producing 100% indicator value on this plate. This 
limit assures that the plate slenderness will be calculated with a safe critical multiplier but taking 
benefit of the continuity of the plates and directly reflects the effect of the actual total stress 
distribution. In such case the result will be fully in line with the recommendations of EN 1993-1-3 on 
using the minimum value for all the compressed plates of the member. Assignment will be made 
only for plates of the cross section falling into Class 4 and subject to at least partial compression 
stresses. 

 
3.2 Modelling technique using reduced thicknesses 
The Eurocode implementation of the Reduced Stress Method results, that the stresses used for 
determination of resistance correspond to the pre-buckling stage, controlled by the part of the 
section most exposed to local buckling. This approach means that the resistance of a welded I 
section beam with Class 4 webs will be overall limited by this stress level lower than the yield stress, 
even if the compression flanges would belong to a lower Class 1-3. 
To overcome this problem, a two-step iteration approach is proposed. In the first step a linear 
analysis and LBA is made completed, followed by the previously mentioned plate sensitivity analysis. 
Based on these results plate slenderness values are calculated for every Class 4 plate with at least 
partial compression stresses. Using the slenderness values the reduction factors are calculated in 
accordance with formulas (4.2) and (4.3) of EN 1993-1-5, but instead of using these reduction factors 
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directly to reduce the limit stress, they will be utilized to define an effective thickness for the given 
plate, using Eq. 3: 
 
 𝑡𝑒𝑓𝑓 = 𝜌 ∙ 𝑡 (3) 

 
where ρ is the reduction factor from EN 1993-1-5 in function of plate slenderness and boundary 
conditions. The thickness reduction will be applied to the full length of this plate, even to parts 
under tension. 
Once for each plate of the shell representation an appropriate thickness reduction has been 
assigned, a new linear elastic analysis is performed, with shell finite elements. This will result new 
membrane stresses which corresponds to the use of effective thicknesses and therefore will 
automatically contain the necessary effects caused by the shift of effective centroid, as required by 
Eurocode. As the effect of local buckling due to longitudinal membrane stresses has already been 
incorporated in the plate thickness, and as it has been said at the beginning of this paper, that it is 
assumed that other available stress components will not cause buckling, all the reduction factors can 
be eliminated from formula 10.5 of EN 1993-1-5. This results the following verification formula: 
 

 (
𝜎𝑥,𝐸𝑑

𝑓𝑦/𝛾𝑀1
)2 + (

𝜎𝑧,𝐸𝑑

𝑓𝑦/𝛾𝑀1
)2 −⁡(

𝜎𝑥,𝐸𝑑

𝑓𝑦/𝛾𝑀1
) ∙ (

𝜎𝑧,𝐸𝑑

𝑓𝑦/𝛾𝑀1
) + 3 ∙ (

𝜏𝐸𝑑

𝑓𝑦/𝛾𝑀1
)2 ≤ 1 (4) 

 
where 𝜎𝑥,𝐸𝑑 are the dominant longitudinal membrane stresses which have been indirectly increased 
and redistributed due to the use of reduced effective thickness and shift of effective centroid. Other 
stress components are calculated based on the original plate thickness. 
 
4. Example 
 
4.1 Beam-column under compression and strong axis bending moment 
The method is demonstrated on a simple supported 5 meters long beam-column with forked 
supports. The member has a double symmetric welded I section, The total height of the section is 
1000 mm and the flanges are 350 mm wide. Steel grade is S355. 
 

 
Figure 1: Cross-section of the welded member 

 
The beam follows the usual practice, the web is much slender than the flange and falls into a cross 
section Class 4 under combined stresses. The flanges are of Class 1-2. To comply with this, the web 
thickness was taken as 5 mm and the flange thickness as 22 mm. 
The gross area of the section is 20180 mm2. 
 
As the focus of this paper is not on the effects of global buckling, the beam is assumed to be laterally 
restrained against displacement at the intersection of the web with the flanges, along its full length. 
 
5 load cases with a combination of different levels of compression force and bending moment are 
considered.  
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1. Pure compression (ψ = 1): 
2. Compression with a strong axis bending moment causing higher compression in the upper 

flange and resulting a stress gradient (ψ = 0,5): in the web  
3. Compression with a strong axis bending moment causing compression in the upper flange 

only and resulting a stress gradient (ψ = 0): in the web. Axial stress in the bottom flange is 
zero.  

4. Compression with a strong axis bending moment causing compression in the upper flange 
and tension in the bottom flange and resulting a stress gradient (ψ = -0.5): in the web  

5. Pure strong axis bending moment case (ψ = -1).  

The ultimate compression force resistances for each load case are calculated using the following 
different approaches: 
 

A. use a beam element and use effective cross-sections, according to EN 1993-1-1, EN 1993-1-5 
B. use shell elements and use the reduced stress method according to EN 1993-1-5, but the 

critical local buckling stress of the whole cross-section is calculated with finite strip method, 
assuming connection of the plates of the cross-section 

C. GMNIA design verification using shell elements, considered as the reference for ultimate 
load level 

D. use the proposed modified application of the Reduced Stress method, with plate sensitivity 
analysis and reduced thicknesses 

 
Detailed calculation steps are presented for the pure compression load case. 
 
A: use of effective cross section, according to EN 1993-1-1, EN 1993-1-5 
 

Table 1: Plate classification 

Plates Section class 

Flanges 2 

Web 4 

 
Relative slenderness of the internal Class 4 compressed web is 4.14 resulting a reduction factor or 
0.2288 using formula 4.3 of EN 1993-1-5. As the flanges are of Class 2, no reduction is necessary. The 
resulting effective cross section’s area is Aeff = 16494 mm2, and the compression resistance is Nc,Rd = 
16494 * 355 / 1.0 = 5855 kN. 
 
B: reduced stress method with the use of finite strip method 
The results of codified Reduced Stress method can be slightly improved by replacing analytical stress 
values with a finite strip analysis. The local buckling region of the signature curve is shown on Figure 
2. The buckling half-wavelength at the minimum point is 650 mm and the corresponding critical load 
multiplier αcr is 0.097, under the application of a membrane stress equal to the yield strength of 355 
N/mm2 
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Figure 2: Signature curve obtained with finite strip analysis 

 
The obtained critical stress is equal to 355 * 0.097 = 34.44 N/mm2. The resistance based on this 
calculation is Nc,Rd = 0.29 * 20180 * 355 = 2077.5 kN, with intermediate results of 3.21 for web 
slenderness and corresponding 0.29 reduction factor. 
 
C: GMNIA design verification using Consteel research version 
This approach is considered as the reference calculation, based on EN 1993-1-5 Annex C. The model 
used for the analysis has the following characteristics: 

- 4 node shell finite elements are used with a maximum mesh size of 50 mm. 
- The material model is elastic-plastic with a nominal plateau slope, according to EN 1993-1-5 

C.6(2). 
- The nodes at the extremities are constrained into master nodes which are supported by 

usual fork supports.  
- As imperfection the first buckling mode (local buckling) of LBA is used with a scaling of 

hw/200 = 4.89 mm.  
- No residual stresses are considered. 
- A load equal to 10% of the resistance value of determined based on the effective cross-

section is applied initially and increased until the plateau of load-displacement diagram is 
found. 

 
The obtained resistance value was found as 5982.02 kN. The corresponding deformed geometry and 
stress distribution at the failure load level is shown on Figure.3: 
 

 
Figure 3: Stress distribution at ultimate load level 

 
D: Proposed application of Reduced Stress Method with the commercial version of Consteel  
The 2 round calculation was performed with Consteel, using its standard triangular shell elements. 
The material model is fully linear elastic. The nodes at the extremities are supported the same way 
as for the GMNIA analysis, by usual fork supports. An initial trial compression load of 1000 kN is 
applied in one single step and first an LBA is performed. Up to 10 buckling shapes with 
corresponding eigenvalues are calculated.  
The applicable modes for the different plated is chosen based on the presented plate sensitivity 
analysis. The calculated contribution indicators for the first buckling shape (see Figure 4) are the 
followings (Table 2): 
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Figure 4: First buckling shape from LBA with Consteel shell elements, with αcr = 0.71 

 
 

Table 2: Results of plate sensitivity analysis 

Plate ki   
    

Upper flange 0   
Web 100%   

Lower flange 0   

 
 
These results mean that the first buckling mode shall be uniquely assigned to the web plate, as the 
contribution indicators have a value of 0.0 at the flanges and 100% at the web. It means that the 
restraining elements (the flanges) are fully effectively restraining the web, without any need for 
assigning as a safety this low buckling shape also for the flanges. There was no buckling mode found 
within the first 10 modes which would have a contribution indicator value above the limit assumed 
as 20%, therefore no buckling shape will be assigned for the flanges. 
 
As the result of the first LBA analysis, the elastic critical stress to be considered for the web is 71% of 
the membrane stress obtained from the test load of 1000 kN with the original thicknesses,  0.71 * 
49.55 = 35.18 N/mm2 (same as obtained with finite strip analysis) which will be used to calculate a 
reduced thickness, instead of a reduced limit stress. No reduction of the flange thicknesses will be 
necessary. 
 

Table 3: Reduced thicknesses to consider the effect of local buckling 

Plates Reduced thickness 

Flanges 1.0 * 22 = 22 mm 

Web 0.29 * 5 = 1.45 mm 

 
The second analysis with the modified thicknesses is a simple stress calculation with linear material 
model, resulting the necessary membrane stresses for the final verification with formula (4). As a 
consequence of the reduced gross area of the member, the membrane stresses will increase in all of 
the elements. 
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Figure 5: Membrane stresses obtained from a trial load of 1000 kN on the model with reduced thicknesses 

 
These stresses include indirectly the effect of the local buckling identified on the web and as a 
consequence there is no need for a second reduction. As we have a linear analysis, the resistance 
can be directly calculated using formula (4), Nc,Rd = 1000 * 355 / 59.50 = 5966.4 kN. 
 
4.2 Evaluation of the results 
The results of all 5 load cases are shown on Figure 6. The vertical axis shows the compression force 
resistance, and the horizontal axis shows strong axis bending moment resistance. The dark blue line 
with the lowest resistances corresponds to calculation “B”, with the Reduced Stress method, and the 
light blue line with the highest values corresponds to the GMNIA results (calculation “C”), 
considered as reference value. The orange line corresponds to the resistances obtained with a beam 
element using effective cross-section properties (Calculation “A”) and finally the line shown with 
green colour corresponds to the proposed improved Reduced Stress Method (Calculation “D”), using 
the naming convention introduced on Page 5. 
As it can be seen, this last line almost perfectly fits to the most traditionally expected results 
obtained with beam representation, used in everyday practice by engineers. In the range of pure 
bending the obtained resistances are a bit higher, but still below the GMNIA results. 

 

 
Figure 6: Envelope NRd, MRd resistance values of 5 load cases, explanation for calculation modes see on Page 5 
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4. Conclusions 
Based on the presented example this improved approach has the potential to eliminate the 
conservatism of the codified version of Reduced Stress method and allows to implement a design 
verification in computer programs, based on shell elements, as an alternative, when the traditional 
approach with beam finite elements is not applicable. 
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Design proposal for bolted angle members in compression 
 

Markus Kettler1, Harald Unterweger2 
 
 
Abstract 
The type and size of the rotational restraints at the gusset plates near the member’s ends (provided by 
the adjacent structure) are crucial for the prediction of the compression member capacity of bolted 
angles. This was highlighted by the authors by means of experimental and numerical investigations in 
the past. Due to the eccentric connection on only one leg, additional bending moments are acting on the 
member, leading to a complex load carrying behaviour with flexural and/or lateral torsional buckling 
phenomena. 
Detailed analytical models for the estimation of appropriate spring stiffness values have been developed 
for several practical applications in buildings and two-bolt connections at both member’s ends. The 
investigated connection details comprise a simply fixed gusset plate (e.g. as attachment to concrete 
walls), a joint to the flange of an I-shaped section and a joint to the web of an I-shaped section via a 
gusset plate. Based on that, a design model was developed for bolted angle members with rotational 
spring restraints at both member’s ends and an eccentric compression loading N, in order to calculate 
the compression capacity NR. 
Within this paper, the proposed design procedure is presented. Moreover, the thereby determined 
resistances NR,model are compared with the results of sophisticated 3D finite element calculations NR,FEM 
that consider the actual boundary conditions and the eccentric load introduction as well as equivalent 
geometric imperfections. The finite element model has preliminary been calibrated on the experimental 
test results. The comparison indicates that the resistances based on the proposed design procedure are 
slightly conservative compared to the real behaviour of the angle member. In addition, the large 
increase in capacity (compared to the simply supported reference case) is highlighted. Therefore, it is 
concluded that the new design proposal is able to predict the compression member capacity of bolted 
angles safely and economically. 
 
1. Introduction 
The numerical investigations in Kettler et al. (2017) as well as the experimental results in Trahair et al. 
(1969) and Kettler et al. (2019a) highlighted the significant influence of different boundary conditions on 
the compression member capacity of bolted single steel angles. Fig. 1 exemplarly shows the ultimate 

compression member capacity NR, related to the plastic section capacity of the angle section Npl = A  fy 
for a hot-rolled angle section L 80/8 with 2-bolt connections on both ends. It is noted that all results are 

based on the relative slenderness v

 

about the minimum axis v, calculated with the member length L. 

Results for member tests and also for numerical FEM-calculations are shown, indicating the huge band 
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width of load carrying capacity. The investigated boundary conditions are: BC1 = fully rigid, BC2 = knife 
edge support, BC3 = fully hinged. 
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Figure 1: Compression member capacity of bolted angle member L80/8 with 2-bolt joints – huge band width for 

borderline cases of joint stiffness (BC1 = fully rigid, BC2 = knife edge support, BC3 = fully hinged) 

 
Additionally, the corresponding resistance predictions according to current European design standards 
(EN 1993-3-1 and EN 50341-1 for masts and EN 1993-1-1 for buildings) are plotted. The comparison of 
results reveals that the different code procedures result in approximately the same resistances for angle 
sections with at least two bolts in the connected leg at both members ends. However, the actual type 
and size of the rotational restraints at the gusset plates near the member’s ends (provided by the 
adjacent structure) are not considered in these design procedures. This fact can lead to unsafe results 
for boundary conditions BC 2 and BC 3 and produces uneconomic results for BC 1. 
The significant influence of the joint stiffness, as shown in Fig. 1 for a L 80/8 section, holds also for other 
angle sections and was motivation for the authors to develop a new design model for the calculation of 
the compression member capacity NR of bolted steel angles that takes into account the actual restraints 
at the members ends. Similar models have also been presented in Usami et al. (1971) and Schneider 
(2003), but the major drawback of these previous proposals was that no reliable parameters for realistic 
end restraints were available.  The main focus of the current research is on angles in buildings. 
Therefore, two bolts at each members end are considered as the reference case for the new design 
procedure and the formulae for the stiffness parameters are derived for that case. 
In section 2, this new design model is presented in detail. The background of the development and 
validation of this new design model is shown in section 3. Finally, section 4 summarises the influence of 
this new design concept on design practice. 
 
2. New design model for compression member capacity of bolted steel angles 
Fig. 2 summarises all the details of the new design model with 2-bolt connections on both ends. The 
design model allows to calculate the internal forces based on second order theory for an individual 
member (1D-model, with bending stiffness about main axes u and v and torsion stiffness) with 
eccentricities (ey, ez) and spring stiffness (cϕ,in, cϕ,out based on Fig.3) at both ends. In addition, an 
equivalent bow imperfection, with amplitude e0,u = L/300, about the minimum axis should be taken into 
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account. Fig. 3 presents formulae for the rotational stiffness of several joint types, that are currently 
covered by the new design model. Additional practical joint types are under development. The accurate 
length L is also given in Fig. 3. 

Fig. 2

x

NR,1D

NR,1D

NR,1D

bolted connection

      

member centerline

 
Figure 2: New design model for calculating the compression capacity NR,1D of a bolted angle member 

(Note: the final compression capacity is NRd = NR,1D∙fDi) 

 
The compression member capacity NR,1D is reached, if the elastic section capacity of the angle member is 
fully utilized. This leads to an iterative procedure. The vertical load N at the load point is increased, until 
the maximum normal stresses at the critical section (generally at midspan) are equal to the yield 
strength (design value fy,d). 
For better accuracy of the new design model, additional calibration factors fDi, different for each studied 
joint type and summarized in Eqs. (2)-(4), are proposed to get the final compression member capacity 
NRd based on Eq. (1). The background for the calibration factors fDi will be shown in section 3. 
 
 DiDRRd fNN  1,  (1) 

Detail 1 - fixed gusset plate connection: 

 93003609601 ...f vD    (2) 

Detail 2: girder flange connection: 

 21.1045.028.041.1
2

2  vvDf   (3) 

Detail 3: girder web connection: 

 111110213 ...f vD    (4) 
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Detail

1a

1b

2

3

parameters: 

where:  Lg girder length            IT, Iω, Iz torsional, warping and bending stiffness of girder

G shear modulus         ν Poisson s ratio for steel (ν = 0.3)
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Figure 3: Summary of spring-stiffness formulae cϕ,in and cϕ,out for the investigated details 1-3 
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The following requirements have to be fulfilled for the application of the presented design procedure: 
i. Since local buckling of the angle member is not explicitly included in the design model, the 
investigated angle section should fulfil the requirements for class 3 sections according to EN 1993-1-1; 
For thin-walled angles, reference is given to Dinis et al. (2015). 
ii. The minimum bolt distances e1 (end distance from the centre of the fastener hole to the adjacent end 
of any part, measured in the direction of load transfer) and p1 (spacing between centres of fasteners in a 
line in the direction of force transfer) should meet the following criteria: e1 ≥ 2.5d0 and p1 ≥ 3.0d0, where 
d0 is the clearance of the bolt hole. For smaller values e1 and p1, no FEM-calculations for validation of the 
new design model were done. Additionally, the geometric minimum/maximum values in Fig. 3 have to 
be considered. 
iii. The minimum and maximum member length L is based on the minimum and maximum relative 
slenderness of the angle section about the minimum axis, with 50.min,v 

 

and 82.max,v  . For cases 
with smaller slenderness values than min,v , the member capacity should be calculated with the 
minimum length Lmin based on min,v . The background of this additional rule is based on the investigated 
parameter range of the conducted FEM-calculations for calibration of the model, presented in section 3.  
 
The new design procedure is also applicable, if at the joint an additional tension member – on the same 
or on the opposite side of the gusset plate – is situated. 
In the case of 1-bolt joints, the spring stiffness cϕ from Fig. 3 is not applicable. In Kettler et al. (2019a), it 
was observed that also fully preloaded single bolts of steel grade 10.9 act like a pin for the member. 
Therefore, for 1-bolt joints, the new model in Fig. 2 should be used without any rotational restraints at 
both ends (cϕ,in = cϕ,out = 0), but with both eccentricities (ey and ez). 
It is assumed that the new model also works for the case of unequal angle members with two bolts on 
the longer angle leg, but this was not verified by additional FEM-calculations. A bolted connection on the 
shorter angle leg should be avoided, due to small member capacity, see Reininghaus et al. (2005). 
 
3. Background and validation of the new design model 
To calibrate and validate the new design model, three individual steps for numerical FEM-calculations on 
3D-models, including the angle member and the individual joint type, were necessary: 
 
Step 1: FEM-calculations for the member tests with borderline cases for joint stiffness (BC1 = fully 

rigid, BC2 = knife edge support, BC3 = fully hinged). The comprehensive FEM-study in Kettler et 
al. (2019b) shows that an equivalent geometric imperfection of e0 = L/300, without any 
residual stresses, leads to safe sided results (mean value NFEM/Ntest=0.96). Additional 
calculations with residual stress patterns according to ECCS TC8 Stability (1976) showed that 
the influence of residual stresses on the member capacity is negligible for the conducted 
experimental tests. It is noted that the suggested imperfection amplitude e0 = L/300 in the new 
design model is not in contradiction to the value of e0 = L/200 in Schillo et al. (2015), because 
the latter one is based on pinned ends, without any eccentricity at the member ends. 

Step 2: FEM-calculations for joints in practice, shown in Fig. 3 and determination of elastic joint 
stiffness (cϕ,in and cϕ,out). Within these calculations, the angle member was modelled as rigid, 
because the bending stiffness of the angle member is part of the design model – also in the 
joint region. 

Step 3: FEM-calculations to determine the compression member capacity NFEM of individual cases of 
bolted angle members with 2-bolt connections and specific joint types with consideration of 
the equivalent bow imperfection e0,u. These results are compared with the results of the new 
design procedure in the following. 
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The FEM-calculations were done on 3D-models with the software ABAQUS. In the region of the joints, 
the angle member as well as the adjacent structure (gusset plate or girder flange) were modelled by 
solid elements (type C3D8R). For the inner part of the angle member, shell elements were used (type 
S4R), ignoring the fillets in the corner and at the leg tips. The bolts were also modelled by solid elements 
and the pre-stressing force was applied as a preload, considering hard contact and a coefficient of 
friction of µ = 0.25. Near the bolt holes, linear elastic behaviour was assumed, to prevent local yielding. 

Overall, the material behaviour was assumed as linear elastic – ideal plastic (E=210 000 N/mm2, =0.30) 
without any safety factors (fy = 235 N/mm2 for S235). 
Fig. 4 presents a comparison of the results of the new design model (NR,1D) with the results of the FEM-
model (NFEM) for individual member configurations (in total 36 cases) with fixed gusset plate connections 
(detail 1a). Three different angle members (L60/6, 90/9, 120/12) are presented, with three different 
relative slenderness values ( v  = 0.8; 1.8; 2.8). Different geometries of the gusset plate are studied, 
with variation of the thickness t (10 or 20 mm) and the height h (150 or 400 mm). The length of the 
gusset plate is different for each angle type, because of different bolt diameters (M16, M24, M27), but 
similar bolt distances e1/d0 and p1/d0 are used. In order to ensure conservative results, the calibration 
factor fD1 in Eq. (2) is suggested. The slightly unsafe prediction with the design model for case 
20/150/2.8 for angle type 120/12 is avoided with the additional requirement of h/b ≥ 1.50 (see Fig. 3). 
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Figure 4: Calibration of the design model for detail 1a 
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Figure 5: Calibration of the design model for detail 2a 

 
Fig. 5 and Fig. 6 present the comparison of member capacities (NFEM/NR,1D) for the investigated details 2a 
and 3a, respectively (both with the member axis perpendicular to the girder axis). Again the same angle 
types (L 60/6; L 90/9; L 120/12) and relative slenderness values ( v = 0.8; 1.8; 2.8) are studied. 



 7 

Additionally, two very different girder types are investigated (HEA 200, HEA 800 for detail 2a and HEA 
600, HEA 1000 for detail 3a) with two different support ratios (Lg/hw = 10; 20). The results for details 2a 
and 3a indicate a significant influence of the relative slenderness v  on the accuracy of the new design 
model. In order to achieve more economic results with the new design procedure, the calibration 
factors fD2 and fD3 based on Eqs. (3) and (4) are suggested. 
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Figure 6: Calibration of the design model for detail 3a 

 
 
4. Conclusions and impact on design practice 
Summarising, Figs. 7-9 present a comparison of the compression member capacities NFEM for connection 
types 1a, 2a and 3a with the resistances according to EN 1993-1-1. Additionally, buckling curve b is 
plotted as a reference for a pinned angle member, without any eccentricity at both member ends. The 
comparison of the FEM results with the also plotted curve for the pin-ended case (cϕ,in = cϕ,out = 0) with 
load eccentricity highlight that the rotational restraints from all investigated structural details 
significantly increase the compression capacity of the angle members. 
The presented results also indicate the following trend: For a relative slenderness v < 1.0, the 
consideration of the real joint stiffness leads to a reduction of the member capacity for the investigated 
structural details, in comparison to the current Eurocode design procedure. On the other hand, for 
higher slenderness values ( v >1.0), also higher member capacities NR are available than predicted by 
EN 1993-1-1. The herein presented new design procedure for bolted angle members in compression is 
able to accurately represent this effect by additionally taking into account the effect of rotational 
restraints at the member’s ends provided by the adjacent structure. 
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Figure 7: Comparison of compression member capacity for detail 1a 
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Figure 8: Comparison of compression member capacity for detail 2a 
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Figure 9: Comparison of compression member capacity for detail 3a 
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Tests of cold-formed steel built-up sections with web holes subjected to web 
crippling 

Jun He1 and Ben Young2 
 
Abstract 
This paper presents an experimental study on web crippling behaviour of cold-formed steel built-up I-
sections with circular web holes. The built-up sections were formed by connecting two identical unlipped 
channels with self-tapping screws. The web hole was located at mid-height of the web and directly 
beneath the bearing plates. Web crippling tests were conducted on 6 built-up sections without web holes 
and 19 built-up sections with perforated web under End-Two-Flange and Interior-Two-Flange loading 
conditions. The web crippling strengths, failure modes and load-displacement curves were reported. The 
experimental ultimate strengths for specimens without web holes were compared to the nominal 
strengths predicted from North American Specification, Australian/New Zealand Standard and European 
Code for cold-formed steel structures. It should be mentioned that the existing international design codes 
do not have explicit design formula to predict the web crippling strength of cold-formed steel built-up 
sections with perforated web. Therefore, the test strengths of specimens with perforated web were 
compared with the strengths derived from the design equations proposed in the literature. It is shown 
that the design strengths predicted from current design specifications are either conservative or 
unconservative for the specimens without web holes, while the design equations in the literature are 
generally unconservative for the specimens with perforated web. 
 
Keywords: Cold-formed steel; Built-up sections; Web crippling; Web holes. 
 
1. Introduction 
Cold-formed steel built-up sections are being used in construction industry because of their favourable 
loading capacity and higher torsional rigidity compared with singly symmetric sections. When cold-formed 
steel built-up sections are used as beam members, the webs of beams may fail by web crippling under 
concentrated bearing loads. To facilitate the installation of mechanical, electrical and plumbing systems 
in a building, web openings are commonly introduced in cold-formed steel members. Cold-formed steel 
built-up sections with web perforation should be investigated as the existing international design codes 
do not cover the web crippling design for such sections. 
 
In the literature, many investigations have been conducted to study the behaviour of cold-formed steel 
members with web holes undergoing web crippling. Sivakumaran and Zielonka (1989) proposed a strength 
reduction equation based on 103 web crippling tests of cold-formed steel lipped channel sections with 
web openings under Interior-One-Flange (IOF) loading condition. The research was aimed at square, 
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rectangular and oval web holes. Langan et al. (1994) investigated the effects of web holes on the web 
crippling behaviour of cold-formed steel lipped C-shaped sections under End-One-Flange and Interior-
One-Flange loading conditions. In this study, only rectangular web holes with fillet corners were 
considered. LaBoube et al. (1999) extended Langan’s study to specimens with circular web openings. 
Uzzaman et al. (2012a, 2012b) and Lian et al. (2016b, 2016a, 2017b, 2017a) conducted a series of 
investigations on web crippling behaviour of cold-formed steel lipped channel sections with circular web 
holes. The cases of both flanges fastened and unfastened to the support were considered in these studies. 
Design recommendations were proposed based on test results and numerical results. However, all the 
aforementioned studies were conducted on cold-formed steel channel sections only. Davis (1972) 
investigated the behaviour of cold-formed steel built-up sections with openings subjected to web 
crippling, but the tests were conducted on Interior-Two-Flange loading only. As mentioned earlier, the 
existing international design codes do not have design recommendation for cold-formed steel built-up 
sections with perforated webs undergoing web crippling, which is mainly due to the limited research. 
 
The purpose of this study is to experimentally investigate the effects of circular web holes with different 
diameters on the web crippling behaviour of cold-formed steel built-up sections. The web holes were 
located at mid-height of the webs and centred beneath the bearing plates.  A series of web crippling tests 
were conducted under End-Two-Flange (ETF) and Interior-Two-Flange (ITF) loading conditions. The 
accuracy of the design equations specified in current design specifications for the specimens without web 
holes as well as the strength reduction factor equations proposed in the literature for the specimens with 
perforated web were evaluated.  
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2. Experimental investigation 
 
2.1 Test specimens 
Totally 25 cold-formed steel built-up I-sections were tested. The built-up I-sections were fabricated by 
connecting two identical unlipped channel sections back-to-back through self-tapping screws, as shown 
in Fig. 1. The unlipped channel sections were brake-pressed from zinc-coated steel sheets with nominal 
0.2% proof stresses of 450 MPa and 500 MPa. Figure 2 shows the screw arrangements along the specimen 
length. The screw spacing along the length of the specimen was 75% of the overall web depth (H) of the 
specimen to satisfy the minimum spacing requirements in the current North American Specification (AISI 
2016). The screws were located as close to the flanges as possible, as shown in Fig. 1. The measured 
distances (e) from the flanges to the location of the screws for each specimen is shown in Tables 1 and 2. 
The values of nominal hole diameter-to-web depth ratio (a/h) were 0.25, 0.5 and 0.7. All the web holes 
were located at mid-height of the webs and centred beneath the bearing plates.  
 
The test specimens had three different cross-sectional sizes with the nominal overall web depths (H) of 
120mm and 200mm, the nominal overall flange widths (B) of 40mm and 70mm and the nominal 
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thicknesses (t) of 1.2mm and 1.9mm. The measured inside corner radii (ri) of the sections ranged from 
0.50 to 1.27 mm. The concentrated forces were applied through two bearing plates which were made of 
high strength steel, and the thickness of all bearing plates was 50 mm. The flanges of the built-up sections 
were not fastened to the bearing plates. The recommended minimum specimen length (L) in AISI S909 
(AISI 2017) is 3h for both ETF and ITF loading conditions. In this study, the specimen length was 
conservatively designed to be N + 3H, where N denotes the bearing length. The measured dimensions of 
each specimen are shown in Table 1 and Table 2. 
 
2.2 Specimen labelling 
The specimens were labelled such that the loading condition, the nominal cross-section of channel 
dimensions, the bearing length and the hole diameter-to-web depth ratio (a/h) in percentage can be 
identified. For example, “ITF-200x70x1.9N150-25-R” defines the specimen as follows, where “ITF” 
indicates the loading condition of the specimen was Interior-Two-Flange loading. The following three 
numbers 200x70x1.9 indicate the cross-section of the channel dimensions (H×B×t=200×70×1.9). The 
notation N150 means the specimen was tested using bearing length of 150 mm. The last two digits “25” 
indicate the nominal a/h ratio in percentage of this specimen. If a test was repeated, then a symbol “-R” 
was added to the end of the label.   
 
Table 1: Measured dimensions of specimens under ETF loading condition 

Specimens H (mm) B (mm) ri (mm) L (mm) t* (mm) t (mm) e (mm) a (mm) 

ETF-120x40x1.2N90-00 119.8  40.4  0.50  450.2  1.25  1.21 10.8  0.0  
ETF-120x40x1.2N90-25 119.3  40.4  0.76  449.8  1.24  1.20 10.5  28.0  
ETF-120x40x1.2N90-50 119.5  40.6  0.77  450.4  1.24  1.21 10.4  53.0  
ETF-120x40x1.2N90-70 119.7  40.4  0.79  450.3  1.25  1.22 10.5  79.9  
ETF-120x40x1.9N90-00 119.8  39.4  1.14  450.4  1.92  1.85 11.7  0.0  
ETF-120x40x1.9N90-25 119.5  39.3  1.14  450.3  1.92 1.85 11.8  28.8  
ETF-120x40x1.9N90-50 120.0  39.4  1.08  450.1  1.92  1.85 11.8  52.9  
ETF-120x40x1.9N90-70 119.7  39.3  1.08  450.2  1.92  1.85 11.8  79.9  
ETF-200x70x1.9N150-00 199.8  69.5  1.15  750.3  1.91  1.85 11.6  0.0  
ETF-200x70x1.9N150-25 199.7  69.4  1.15  749.6  1.91 1.85 12.0  49.3  
ETF-200x70x1.9N150-50 199.5  69.5  1.09  749.8  1.91 1.84 12.2  96.1  
ETF-200x70x1.9N150-70 199.6  69.5  1.09  750.0  1.91  1.85 12.2  139.8  

Note: t is the base metal thickness measured after removing the zinc coating 
 
Table 2: Measured dimensions of specimens under ITF loading condition 

Specimens H (mm) B (mm) ri (mm) L (mm) t* (mm) t (mm) e (mm) a (mm) 

ITF-120x40x1.2N90-00 119.7 40.4 0.70 450.7 1.25 1.21 10.6 0.0 
ITF-120x40x1.2N90-25 119.3 40.5 0.76 450.0 1.24 1.21 10.6 28.1 
ITF-120x40x1.2N90-50 119.4 40.5 0.72 450.5 1.25 1.21 10.5 53.1 
ITF-120x40x1.2N90-70 119.8 40.4 0.73 450.3 1.25 1.21 10.8 80.0 
ITF-120x40x1.9N90-00 119.8 39.3 1.08 450.2 1.92 1.85 11.8 0.0 
ITF-120x40x1.9N90-25 119.8 39.2 1.08 450.2 1.92 1.85 12.0 26.9 
ITF-120x40x1.9N90-50 120.0 39.4 1.08 449.9 1.92 1.85 11.6 52.9 
ITF-120x40x1.9N90-70 119.9 39.3 1.09 450.2 1.91 1.84 11.8 79.8 
ITF-200x70x1.9N150-00 200.2 69.5 1.09 749.9 1.91 1.84 12.0 0.0 
ITF-200x70x1.9N150-25 199.7 69.5 1.27 749.4 1.92 1.85 11.7 49.9 
ITF-200x70x1.9N150-25-R 200.0 69.4 1.15 750.2 1.91 1.84 12.0 49.0 
ITF-200x70x1.9N150-50 199.8 69.6 1.15 749.8 1.91 1.84 12.1 96.0 
ITF-200x70x1.9N150-70 199.7 69.6 1.08 749.7 1.92 1.85 12.2 139.9 

Note: t is the base metal thickness measured after removing the zinc coating 
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2.3 Material properties 
Tensile coupon tests were performed to determine the material properties of the specimens. The tensile 
coupons were extracted from the centre of the web in the longitudinal direction of the channel sections. 
The coupon dimensions were designed in accordance with the ASTM (2016). The tensile coupons used in 
this study had a width of 12.5mm with 50mm gauge length. The tensile coupon tests were carried out 
using an MTS testing machine under displacement-controlled mode. An extensometer with the gauge 
length of 50 mm was used to measure the longitudinal elongation of the coupons. Two strain gauges were 
also attached to both faces of the coupons. Initial readings of the strain gauges were used to determine 
the Young’s modules. The static stress-strain curves of each coupon test were determined according to 
the test procedures reported by Huang and Young (2014). The static stress-strain curves were used to 
obtain the material properties of each coupon, including initial Young's modulus (E), 0.2% proof stress 
(σ0.2), ultimate tensile strength (σu), and strain at fracture (εf) as shown in Table 3. 

 
Table 3: Measured material properties 

Sections Nominal    Measured 

(HxBxt) σ0.2 (MPa)   E (GPa) σ0.2 (MPa) σu (MPa) εf (%) 

120x40x1.2 500   217 579.2 587.5 6.8 
120x40x1.9 450   210 491.2 508.6 11.4 
200x70x1.9 450    210 481.4 509.3 11.6 

 
2.4 Test setup and procedure 
Web crippling tests were conducted on the specimens under ETF and ITF loading conditions, as shown in 
Fig. 3. The concentrated force was transferred through two identical bearing plates. Hinge supports were 
simulated by two half-rounds, which were bolted to the bearing plates. Linear variable displacement 
transducers (LVDTs) were used to capture the vertical deformation and lateral deformation of the webs. 
Four LVDTs were positioned on each bearing plate and the average readings of the four LVDTs were 
recorded as the displacement of each bearing plate. Vertical deformation of the webs was calculated as 
the difference between the displacement of two bearing plates. The specimens were tested using a servo-
controlled hydraulic testing machine under displacement control at a constant rate of 0.2 mm/min. 
Photographs of the ETF and ITF loading tests are shown in Fig. 4. 
 

N3H

H

Specimen

LVDT

Bearing Plate

Half round

Loading ram

LVDT

Half round

Specimen

LVDT

1.5HN1.5H

H

Bearing Plate

Loading ram

LVDT

 
                         (a) End-Two-Flange (ETF) Loading                                     (b) Interior-Two-Flange (ITF) Loading  

Figure 3: Schematic illustration of test setup 
 

2.5 Test results 
Totally 12 specimens were tested under ETF loading condition, and 13 specimens were tested under ITF 
loading condition. The experimental web crippling strengths per web (PExp) and also for the entire built-
up specimens (PExp*) are reported in Tables 4 and 5. One repeated test was conducted on specimen “ITF-
200x70x1.9N150-25” and the difference in failure load was only 2.2% compared with the original test. 



 5 

Typical failure modes of the specimens failed under ETF and ITF loading conditions are shown in Fig. 4. 
Typical load (per web)-displacement curves obtained from the tests are shown in Fig. 5.  
 

        
                       (a) End-Two-Flange Loading                                               (b) Interior-Two-Flange Loading 

Figure 4: Photographs of test setup and typical failure modes 

 

               
                   (a) End-Two-Flange Loading                                               (b) Interior-Two-Flange Loading  

Figure 5: Typical load-displacement curves 

 
3. Comparison of experimental strengths with current design strengths 
 
3.1 Built-up sections without web holes 
As mentioned in the introduction of this paper, no design equation is available for cold-formed steel built-
up sections with web holes in the current design specifications. Therefore, only the experimental 
strengths of specimens without web holes were compared with the nominal strengths obtained from the 
North American Specification (AISI 2016), Australian/New Zealand Standard (AS/NZS 2018) and Eurocode 
3 Part 1-3 (CEN 2006).  
 
The design equations specified in AISI (2016) are based on a unified equation with different coefficients 
according to different cross-section shapes, loading conditions and whether the flanges are fastened or 

not. The coefficients for built-up sections are shown in Table G5-1 of the AISI (2016), which were 
statistically calibrated using the test data reported by Winter and Pian (1946), Hetrakul and Yu (1978), 
Bhakta et al. (1992) and Cain et al. (1995). It should be noted that coefficients are not provided for built-
up sections with unstiffened flanges under ETF and ITF loading conditions due to lack of experimental 
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data. Therefore, the coefficients for built-up sections with stiffened flanges were used to calculate the 
nominal strengths. The design rules in the AS/NZS (2018) are identical to the design rules in the AISI (2016), 
with the same coefficients for built-up sections as shown in Table 3.3.6.2 (A) of the AS/NZS (2018). 
Eurocode 3 Part 1-3 (CEN 2006) has adopted the design rules specified in the AISI (1996) with modification 
in the definition of the parameter “h”, from “flat portion of the web” to “distance between centreline of 
the flanges”. The design equations specified in CEN (2006) were proposed based on the test results 
reported by Winter and Pian (1946) and Hetrakul and Yu (1978). The cases of built-up sections with 
unstiffened flanges loaded under ETF and ITF conditions were not investigated. However, the design rules 
in CEN (2006) use the same equations for built-up sections with stiffened and unstiffened flanges.  
 
Table 4 shows the comparison of experimental strengths per web (PExp) for specimens without web holes 
with the nominal strengths (Pn) calculated according to AISI (2016), AS/NZS (2018) and EC3 (CEN 2006). It 
is shown that the web crippling strengths of built-up sections predicted by AISI (2016) and AS/NZS (2018) 
design equations are unsafe. The mean values of experimental strengths-to-predicted strengths ratio 
(PExp/Pn) are 0.72 and 0.55 with the corresponding COVs of 0.100 and 0.089 for ETF and ITF loading 
conditions, respectively. On the other hand, EC3 (CEN 2006) conservatively predicts the web crippling 
strengths, especially under ETF loading condition. The experimental strengths are 74% and 24% higher 
than the predicted strengths on average under ETF and ITF loading conditions, respectively.  
 

Table 4: Comparison of web crippling strengths for specimens without web holes  

  Measured ratio  Test  Comparison, PExp/Pn 

Specimen h/t N/t r/t N/h  PExp* (kN) PExp (kN)  NAS EC3 

ETF-120x40x1.2N90-00 96.1 74.4 0.41 0.77  17.4 8.7  0.68 1.96 
ETF-120x40x1.9N90-00 61.4 48.6 0.62 0.79  41.4 20.7  0.80 1.89 
ETF-200x70x1.9N150-00 104.7 81.1 0.62 0.77  32.2 16.1  0.67 1.37 

Mean       0.72 1.74 
COV       0.100 0.185 

ITF-120x40x1.2N90-00 95.7 74.1 0.58 0.78  27.8 13.9  0.50 1.26 
ITF-120x40x1.9N90-00 61.5 48.6 0.58 0.79  68.2 34.1  0.59 1.36 
ITF-200x70x1.9N150-00 105.5 81.5 0.59 0.77  59.8 29.9  0.56 1.09 

Mean          0.55 1.24 
COV            0.089 0.110 

 
3.2 Built-up sections with web holes 
Uzzaman et la. (2012b) proposed the strength reduction factor (RP) equations for cold-formed steel lipped 
channel sections with circular web holes under ETF and ITF loading conditions:  
For ETF loading condition:                 

                                                             𝑅𝑝 = 0.90 − 0.60 (
𝑎

ℎ
) + 0.12 (

𝑁

ℎ
) ≤ 1        (1) 

For ITF loading condition:                  

                                                             𝑅𝑝 = 1.05 − 0.54 (
𝑎

ℎ
) + 0.01 (

𝑁

ℎ
) ≤ 1        (2) 

To evaluate whether Eq. (1) and Eq. (2) are applicable to cold-formed steel built-up sections, the 
experimental strengths were compared with the experimental web crippling strengths of the built-up 
sections without web holes (PExp-0) multiplied by the respective strength reduction factor (RP) in Eq. (1) 
and Eq. (2). The reduced nominal web crippling strengths (Pnr) were calculated according to Eq. (3): 
 
 𝑃𝑛𝑟 = 𝑅𝑝𝑃𝐸𝑥𝑝−0 (3)  
 
Comparison of web crippling strengths for specimens with web holes is reported in Table 5. The reduced 
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nominal web crippling strengths calculated using Eq. (1) and Eq. (2) are generally unconservative under  
ETF and ITF loading conditions. The mean values of the PExp/Pnr ratio are 0.92 and 0.97, with the 
corresponding COVs of 0.132 and 0.038 for ETF and ITF loading conditions, respectively. It should be noted 
that the predicted strengths are highly unconservative for specimens with nominal a/h ratio of 0.7 under 
ETF loading. The test strengths reached only 73%, 78% and 80% of the predicted strengths for specimens 
“ETF-120x40x1.2N90-70”, “ETF-120x40x1.9N90-70” and “ETF-200x70x1.9N150-70”, respectively. 

 
Table 5: Comparison of web crippling strengths for specimens with web holes 

  Measured ratio  Test  Comparison, 
PExp/Pnr 

Specimen h/t N/t r/t N/h a/h  PExp* 

(kN) 
PExp  

(kN) 
 Uzzaman et la.  

(2012b) 

ETF-120x40x1.2N90-25 96.1 75.0 0.63 0.78 0.24  13.8 6.9  0.94 
ETF-120x40x1.2N90-50 95.4 74.4 0.64 0.78 0.46  12.5 6.3  1.01 
ETF-120x40x1.2N90-70 94.8 73.8 0.65 0.78 0.69  7.4 3.7  0.73 
ETF-120x40x1.9N90-25 61.3 48.6 0.62 0.79 0.25  37.0 18.5  1.06 
ETF-120x40x1.9N90-50 61.6 48.6 0.58 0.79 0.46  29.8 14.9  1.00 
ETF-120x40x1.9N90-70 61.5 48.6 0.59 0.79 0.70  18.6 9.3  0.78 
ETF-200x70x1.9N150-25 104.6 81.1 0.62 0.77 0.25  26.2 13.1  0.97 
ETF-200x70x1.9N150-50 105.2 81.5 0.59 0.78 0.50  23.0 11.5  1.03 
ETF-200x70x1.9N150-70 104.6 81.1 0.59 0.77 0.72  14.4 7.2  0.80 

Mean  0.92 
COV 0.132 

ITF-120x40x1.2N90-25 95.3 74.4 0.63 0.78 0.24  24.2 12.1  0.94 
ITF-120x40x1.2N90-50 95.4 74.4 0.60 0.78 0.46  23.4 11.7  1.04 
ITF-120x40x1.2N90-70 95.7 74.4 0.60 0.78 0.69  17.2 8.6  0.90 
ITF-120x40x1.9N90-25 61.5 48.6 0.58 0.79 0.24  61.8 30.9  0.97 
ITF-120x40x1.9N90-50 61.6 48.6 0.58 0.79 0.46  53.6 26.8  0.97 
ITF-120x40x1.9N90-70 61.9 48.9 0.59 0.79 0.70  46.2 23.1  1.00 
ITF-200x70x1.9N150-25 104.5 81.1 0.69 0.78 0.26  54.6 27.3  0.99 
ITF-200x70x1.9N150-25-R 105.4 81.5 0.63 0.77 0.25  53.4 26.7  0.97 
ITF-200x70x1.9N150-50 105.3 81.5 0.63 0.77 0.50  46.6 23.3  0.99 
ITF-200x70x1.9N150-70 104.7 81.1 0.58 0.77 0.72  38.8 19.4  0.97 

Mean  0.97 
COV 0.038 

 
4. Conclusions 
An experimental investigation of cold-formed steel built-up sections with web holes subjected to web 
crippling was reported. A total of 25 specimens covering various key parameters were tested under ETF 
and ITF loading conditions. The web crippling strengths for specimens without web holes obtained from 
the tests were compared with the predicted strengths calculated according to the current North American 
Specification, Australian/New Zealand Standard and European Code for cold-formed steel structures. It is 
shown that the nominal web crippling strengths predicted by the current design specifications are either 
unconservative or conservative, which is due to the fact that the design equations for ETF and ITF loading 
conditions in the current specifications were derived based on investigations of built-up sections with 
stiffened flanges. Therefore, the development of new design rules for cold-formed steel built-up sections 
with unstiffened flanges is necessary. As for specimens without web holes, the validity of the strength 
reduction factor equations proposed by Uzzaman et al. (2012b) were assessed. The results showed that 
the web crippling strengths calculated using the strength reduction factors are generally unconservative, 
especially for members with nominal a/h ratio of 0.7 under ETF loading condition.  
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Flexural behaviour of cold-formed steel built-up section members 
 

Qiu-Yun Li1, Ben Young2 
 
Abstract 

This paper presents experimental and numerical investigations on cold-formed steel built-up section 

beams. The channels with longitudinal stiffeners were brake-pressed from steel sheets with nominal 
thicknesses of 0.75 and 1.2 mm. First of all, minor axis bending tests were undertaken to explore 
buckling behaviour of the newly designed built-up open and closed sections. The test setup, 
experimental procedure, ultimate moments and failure modes were reported. Then, finite element 
models were developed and validated against the test results. The parametric study incorporating 107 
built-up open and closed section flexural members was performed to generate further numerical data 
over a wide range of sectional configurations and geometric parameters. After that, the comparisons of 
ultimate moments obtained from experiments and finite element analyses with nominal strengths 
calculated on the basis of direct strength method (DSM) that provided in the North American 
Specification and Australian/New Zealand Standard were carried out to evaluate the appropriateness of 
current design rules for cold-formed steel built-up section beams. It is shown that the codified DSM 
equations are generally conservative for flexural strength predictions of the built-up open sections, 
while provide unconservative predictions for the built-up closed sections under minor axis bending.  
 
1. Introduction 
Based on available cold-formed steel (CFS) open sections, the built-up sectional profiles are convenient 
to obtain by composing two or more individual components with discrete fasteners along the 
longitudinal direction of the members. CFS built-up section members have gained increasing research 
interests for their great potential in enhancement of stability due to the nature of symmetric sections 
and load bearing capacity. The flexural behaviour of built-up I-sections and box sections has been 
carefully investigated by Wang and Young (2015) and Li et al. (2016). However, the structural efficiency 
of these traditional cross-sections is limited due to large plate slenderness without stiffener. Therefore, 
many attempts have been made to explore advanced built-up sections for flexural members. Firstly, 
intermediate stiffeners are considered as an effective measure, which can significantly improve local 
buckling strength of CFS sections. The built-up open or closed sections with various types of longitudinal 
stiffeners were thus designed and their bending performance were studied (Manikandan and Sukumar 
2016; Wang and Young 2016). Additionally, Ye et al. (2016) performed an optimization analysis on CFS 
lipped channels to develop more efficient cross-section profiles. It was found that the channels with 
crimped flanges had huge potential in increasing flexural strength. Currently, direct strength method 
(DSM) is a favorable tool for strength prediction of CFS members, especially for complicated sectional 
shapes. But the codified DSM equations are semi-empirical and were verified for certain types of cross-
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sections. For CFS sections that are not covered in present design codes, the appropriateness of DSM 
equations should be evaluated. 
In this study, the channels with longitudinal stiffeners were designed to form novel built-up open and 
closed section members. The channels were brake-pressed from CFS sheets with nominal thicknesses of 
0.75 and 1.2 mm. In order to explore buckling behaviour of the newly designed built-up sections under 
minor axis bending, both experimental and numerical investigations were conducted. Firstly, five four-
point bending tests were carried out to understand the flexural performance of the CFS built-up open 
and closed sections subjected to local buckling, distortional buckling as well as their interactions. The 
ultimate moments and failure modes of all specimens were obtained and employed to calibrate the 
finite element models. Then, the parametric study incorporating 107 different built-up sections with 
longitudinal stiffeners was performed using the validated finite element models to generate more data 
for this investigation. Moreover, the suitability of current design rules was assessed for CFS built-up 
section beams through comparisons of ultimate moments gained from both tests and finite element 
analyses with predicted strengths calculated by DSM equations that specified in the North American 
Specification AISI S100 (AISI 2016) and the Australian/New Zealand Standard AS/NZS 4600 (AS/NZS 
2018).  
 
2. Experimental Investigation 
2.1 Test specimens and material properties 
The built-up sectional profiles involved in the experimental investigation are depicted in Fig.1. The built-
up open and closed section specimens were fabricated by composing two channels with discrete self-
tapping screws along the member length. The nominal overall length of specimen was 1200 mm. 
Referring to AISI S100 (2016) and AS/NZS 4600 (2018), the general screw spacing was set as 100 mm for 
both moment and shear spans, while the smaller screw spacing was utilized near the loading and 
support locations. The actual dimensions of test specimens that were measured for individual channels 
before connecting by screws are presented in Table 1. The specimens were labeled to identify cross-
sectional profile, nominal plate thickness and nominal overall length. For instance, the label 
“BT1.2L1200-b” represents the built-up closed section specimen with nominal plate thickness of 1.2 mm 
and nominal overall length of 1200 mm. Final letter “b” denotes one of the two channels forming the 
built-up section. If label includes the letter “R”, it means that the specimen was loaded as a repeated 
test. The nominal 0.2% proof stresses of the virgin steel sheets with nominal plate thicknesses of 0.75 
and 1.2 mm were 550 and 500 MPa, respectively. In order to consider the effect of cold-forming, tensile 
coupons were tested to obtain the actual material properties. The measured static 0.2% proof stresses 
of sections AT0.75, AT1.2, BT0.75 and BT1.2 were 615, 604, 611 and 606 MPa obtained from the flat 
coupon tests, respectively, and were 637, 641, 631 and 636 MPa determined from the curved coupon 
tests, respectively, which have been reported by Li and Young (2019, 2021) for the same batch of 
specimens.  
 

Table 1: Measured dimensions of four-point bending test specimens 

Specimen h1 

(mm) 
hw 

(mm) 
w1 

(mm) 
w2 

(mm) 
w3 

(mm) 
b1 

(mm) 
t  

(mm) 
t* 

(mm) 
e  

(mm) 
ri  

(mm) 

AT0.75L1200-a 15.6 101.3 14.6 30.4 13.5 30.6 0.788 0.743 25.1 1.5 
AT0.75L1200-b 15.8 101.9 14.7 30.2 14.1 30.7 0.790 0.745 25.1 1.5 
AT1.2L1200-a 16.7 103.0 14.2 30.6 14.5 31.5 1.237 1.195 24.8 2.5 
AT1.2L1200-b 16.9 102.6 14.1 30.4 14.6 32.0 1.239 1.197 24.5 2.5 
BT0.75L1200-a - 103.5 14.4 31.2 14.1 30.5 0.804 0.759 25.0 1.5 
BT0.75L1200-b - 103.1 14.5 31.0 14.0 30.2 0.804 0.759 24.9 1.5 
BT1.2L1200-a - 101.8 14.7 29.8 14.3 31.2 1.236 1.194 25.4 2.3 
BT1.2L1200-b - 102.4 14.7 29.8 14.7 31.3 1.238 1.196 25.4 2.3 
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BT1.2L1200R-a - 102.0 14.8 29.4 14.9 30.8 1.227 1.185 25.2 2.3 
BT1.2L1200R-b - 102.9 14.7 30.1 14.6 31.4 1.223 1.181 25.5 2.3 

Note: t* = thickness of base metal. 

 

 
Figure 1: Cross-sectional profiles and locations of self-tapping screws 

 
2.2 Test setup and procedure 
Five four-point bending tests were carried out on the CFS built-up sections. The test setup is shown in 
Fig.2. The spreader beam was employed to equally transfer the force to the specimens at two points. At 
loading and support positions, rollers and half-round were used to simulate the pin and hinge boundary 
conditions, respectively. In order to avoid possible failure due to local stress concentration, the loading 
transfer plates with a width of 90 mm were set between the rollers or half-round and the specimen. For 
the built-up open section specimens, the lips were placed on the loading transfer plates. Both outer and 
inner stiffener plates were bolted to the flat portions of the section to prevent localized failure. Besides, 
four additional stiffener plates were utilized to protect the compressive lips from buckling at support 
locations. For the built-up closed section specimens, four pairs of stiffener plates were clamped to the 
specimen and wooden blocks were inserted into the closed loop at loading and support locations. 
 
A hydraulic testing machine was used to apply vertical force with displacement control. The constant 
loading rate of 0.5 mm/min was adopted for all specimens. Three displacement transducers (LVDTs) 
were installed at the two loading points and the middle of moment span to measure the vertical 
deflections of specimen, which were employed to calculate the curvature at the moment span. During 
the test, the readings of three LVDTs and applied force were recorded by a data acquisition system at 
regular intervals. Two 100-second pauses were conducted before and near ultimate load to determine 
the static force.  
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Figure 2: Four-point bending test setup 

2.3 Test results 
The static moment-curvature curves of the five minor axis bending tests are shown in Fig.3. The key test 
results, including failure mode, ultimate moment (𝑀𝐸𝑥𝑝) and the ultimate-to-yield moment ratio 

(𝑀𝐸𝑥𝑝/𝑀𝑦) are summarized in Table 2. All specimens failed within the moment span and no lateral-

torsional buckling was observed during the tests. For the built-up closed section specimens, with the 
growth of curvature in the moment span, local buckling occurred at the outer plates where self-tapping 
screws located before reaching the ultimate moment. The local buckling half-waves were formed 
between the screws. It evidences that the arrangement of screws has effect on the failure of built-up 
closed sections. After local buckling occurred, the bending moment kept increasing until distortional 
buckling appeared at the compressive element, where the stiffener deflected from its original position. 
The failure mode of the three built-up closed section specimens that observed at ultimate load was the 
interaction of local and distortional buckling. The results in Table 3 show that the value of 𝑀𝐸𝑥𝑝/𝑀𝑦 for 

specimen BT1.2L1200 is 1.03, which demonstrates that this specimen reached flexural strength after the 
initiation of yielding. Thus, it may be more reasonable to consider inelastic reserve strength in the 
design of CFS built-up closed section beams. For the built-up open sections, specimens AT0.75L1200 and 
AT1.2L1200 were failed by local buckling and distortional buckling, respectively. The buckling firstly 
arose at the compressive lips with a small load drop. After that, the applied load increased until the 
flexural deformation of specimens developed to large curvature. 
 

Table 2: Test and FE results of the CFS built-up section beams 

Specimen Failure 
mode 

𝑀𝐸𝑥𝑝 𝑀𝐸𝑥𝑝

𝑀𝑦

 
Failure 
mode 

𝑀𝐹𝐸𝑀  𝑀𝐸𝑥𝑝

𝑀𝐹𝐸𝑀

 
(kNmm) (kNmm) 

AT0.75L1200 L 1563.7 0.80 L 1554.5 1.01 
AT1.2L1200 D 2800.0 0.84 D 2874.0 0.97 

BT0.75L1200 L+D 1627.5 0.71 L+D 1689.7 0.96 
BT1.2L1200 L+D 3587.5 1.03 L+D 3610.4 0.99 

BT1.2L1200R L+D 3360.0 0.96 L+D 3433.5 0.98 

     Mean 0.98 
     COV 0.017 

Note: In the column of “Failure mode”, L = local buckling, D = distortional buckling 
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Figure 3: Moment-curvature responses of the CFS built-up section beam tests 

3. Numerical Simulation 
3.1 Finite element models 
The finite element (FE) models of CFS built-up open and closed section members were developed by 
adopting the software package ABAQUS (2018) to replicate the four-point bending tests. The shell 

element S4R with mesh size of 5×5 mm at flat portions and a finer mesh at curved portions, which was 
proven appropriate to emulate local and distortional buckling behaviour of CFS sections (Wang and 
Young 2016), was used to model the built-up section members. The self-tapping screws represented by 
cylinders and the stiffener plates preventing the specimens from localized failure were also established 

in the FE models by using the solid element C3D8R with mesh sizes of 2×2×2 mm and 6×6×6 mm, 
respectively. The nonlinear material pattern with isotropic hardening was utilized for CFS built-up 
section beams. The input true stress-true plastic strain relationship was determined from the static 
stress-strain curves of the tensile coupon tests. The material properties obtained from the curved 
coupons were also employed in the FE models to consider the strength enhancement at the curved 
positions of the sections.  
 
Two types of contact conditions were included in the FE models. Firstly, the “Hard” contact interaction 
with friction coefficient of 0.2 was utilized to emulate the actual surface touching between the 
overlapped elements of the built-up sections. Additionally, the “Tie” constraint was defined to model 
the interactions between screws and specimens as well as between stiffener plates and specimens. 
Moreover, the “coupling” restraint was employed to simulate the boundary and loading conditions. Four 
reference points were coupled with the corresponding surface sets at loading and support locations. The 
pin and hinge boundary conditions were modeled by releasing the particular degrees of freedom (DOFs) 
of reference points. The vertical displacement was applied to the reference points at loading positions 
to duplicate the actual test procedure. The static steps with “Nlgeom” were used to conduct collapse 
analysis. In order to solve the convergence problems of thin-walled members, the technique of 
automatic stabilization was adopted in this study, which can efficiently provide a solution in the post-
collapse stage with the help of artificial damping (Schafer et al. 2010).  
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(a) Moment-curvature curves (b) Collapse mode 

Figure 4: Comparison of experimental and numerical results for specimen BT1.2L1200 
 

The comparison of experimental and numerical observations is displayed in Fig.4 for specimen 
BT1.2L1200. In general, the overall shapes of moment-curvature curves obtained from FE analyses 
coincide with those obtained from the tests. In addition, the failure modes match very well between the 
experiments and numerical simulation. The results gained from tests and FE analyses are compared in 
Table 2. It is shown that the mean value of experimental-to-numerical moment capacity ratios 
(𝑀𝐸𝑥𝑝/𝑀𝐹𝐸𝑀) is 0.98 with the corresponding coefficient of variation (COV) of 0.017, which indicates that 

the FE analyses are able to predict the flexural capacity of CFS built-up sections under minor axis 
bending. Considering the complex sectional profiles, material nonlinearity and complicated contact 
conditions, it is thus deemed that the FE models are suitable for parametric study.  
 
3.2 Parametric study 
An extensive parametric study was performed using the validated FE models to further understand the 
flexural behaviour of CFS built-up section beams. Based on the two basic section profiles in Fig.1, 14 
types of open (OI) sections and 14 types of closed (CW) sections incorporating different geometries of 
stiffeners (𝑤3), folded-flanges (ℎ1, 𝑏1, 𝑤1) and webs (𝑤2) as well as varying height-to-width ratio and the 
angle of the folded-flanges were considered in the parametric study. The height of cross-sections varied 
from 148 to 234 mm. The plate thicknesses ranged from 0.8 to 3.2 mm were designed for each type of 
section. The self-tapping screws were set at the middle of overlapped elements for all specimens. The 
general screw spacing of 100 mm and smaller screw spacing at loading and support positions were 
adopted. The measured material properties obtained from the tensile coupon tests of Section A and 
Section B (Fig.1) were applied for the built-up open and closed section series, respectively. In total, 107 
newly numerical data have been generated for CFS built-up sections under minor axis bending. All the 
beams predicted using the numerical analyses were failed within the moment span and these beams did 
not fail by lateral-torsional buckling. For the built-up closed sections, the interaction of local and 
distortional buckling was observed for the majority of specimens, and pure local buckling was observed 
for the minority of specimens. For the built-up open sections, most specimens failed by local buckling or 
distortional buckling and few specimens failed by the interactions of local and distortional buckling. 
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4. Design Rules and Comparison with Experimental and Numerical Strengths 
The suitability of codified DSM equations specified in Chapter F of AISI S100 (2016) and Section 7.2 of 
AS/NZS 4600 (2018) was examined for CFS built-up sections under bending through comparing the 
ultimate moments obtained from tests and FE analyses with nominal strengths. In this study, it is 
deemed that the beam specimens were fully braced and no lateral-torsional buckling occurred. The 
predicted strength was thus taken as the minimum value of nominal flexural strengths for local buckling 
and distortional buckling. Due to the observation from tests, the inelastic reserve capacity has been 
considered. The critical elastic buckling moments that required in DSM equations were determined by 
the finite strip analysis program CUFSM (Schafer et al. 2010). In view of the current situation that the 
built-up section connected by discrete fasteners along the member length cannot be directly simulated 
by the finite strip analysis program and no explicit guideline exists, two kinds of elastic buckling analysis 
models were hence adopted in this study to explore rational model for CFS built-up section beams. The 
first one was the integrated model with specific thickness at the overlapped area, which was used by 
Wang and Young (2016). Two limiting cases including double plate thicknesses (2t) and single plate 
thickness (t) of the overlapped area were utilized for the integrated models in this investigation. 
Additionally, the newly proposed model with two channels connected by solid blocks was also employed. 
The solid blocks were set at the locations of screws and their width was regarded as the diameter of 
screws.  
 
Moreover, the reliability analysis was performed to assess the reliability of codified DSM equations. The 
Eq.K2.1.1-1 of AISI S100 (2016) was utilized to determine the reliability index (𝛽). The target value of 𝛽 
was taken as 2.5. The statistical parameters 𝑀𝑚=1.10, 𝑉𝑀=0.10, 𝐹𝑚=1.00 and 𝑉𝐹=0.05 were obtained 
from Table K2.1.1-1 of AISI S100 (2016), which denote the mean values and coefficients of variation for 
material and fabrication factors, respectively. The typical load combinations of 1.2DL+1.6LL and 
1.2DL+1.5LL were adopted in the analysis, where DL is the dead load and LL is the live load. The 
resistance factor (𝜙) of 0.90 that prescribed in Chapter F of AISI S100 (2016) and Section 7.2 of AS/NZS 
4600 (2018) for CFS flexural members was used in the calculation. In addition, according to Clause 
A1.2(c) of AISI S100 (2016) and Clause 1.6.3(c) of AS/NZS 4600 (2018), the resistance factor of 0.80 was 
also considered because the novel built-up sections are not pre-qualified in the current design codes.  
 

Table 3: Comparison of test and numerical results with predicted strengths for CFS built-up open section beams 

 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝑺
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝟐𝒕
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝒕
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝑺
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝟐𝒕
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝒕
 

Dominated failure L L L D D D 
Number of data 38 42 38 19 15 19 

Mean (𝑷𝒎) 1.21 1.19 1.21 1.06 1.06 1.07 
COV (𝑽𝑷) 0.178 0.183 0.178 0.064 0.043 0.060 

𝝓 0.90 0.90 0.90 0.90 0.90 0.90 
𝜷𝟏 2.69 2.60 2.68 2.74 2.72 2.79 
𝜷𝟐 2.51 2.42 2.50 2.52 2.51 2.57 

𝝓* 0.80 0.80 0.80 0.80 0.80 0.80 
𝜷𝟏* 3.08 2.98 3.07 3.21 3.20 3.26 
𝜷𝟐* 2.90 2.81 2.89 3.00 2.98 3.04 

Note: 1) L = local buckling, D = distortional buckling; 
         2) 𝛽1, 𝛽1* and 𝛽2, 𝛽2* were determined based on the load combinations of 1.2DL+1.6LL and 1.2DL+1.5LL, respectively; 
         3) 𝛽1, 𝛽2  and 𝛽1*, 𝛽2* were calculated with the resistance factors of 0.90 and 0.80, respectively. 

 
Table 4: Comparison of test and numerical results with predicted strengths for CFS built-up closed section beams 
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𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝑺
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝟐𝒕
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝒕
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝑺
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝟐𝒕
 
𝑴𝑬𝒙𝒑 𝒂𝒏𝒅 𝑴𝑭𝑬𝑨

𝑴𝑫𝑺𝑴−𝒕
 

Dominated failure L L L D D D 
Number of data 11 13 11 44 42 44 

Mean (𝑷𝒎) 0.84 0.85 0.84 0.97 0.96 0.98 
COV (𝑽𝑷) 0.118 0.117 0.117 0.055 0.061 0.057 

𝝓 0.90 0.90 0.90 0.90 0.90 0.90 
𝜷𝟏 1.62 1.68 1.62 2.40 2.33 2.42 
𝜷𝟐 1.42 1.48 1.43 2.18 2.12 2.21 

𝝓* 0.80 0.80 0.80 0.80 0.80 0.80 
𝜷𝟏* 2.05 2.11 2.05 2.88 2.81 2.90 
𝜷𝟐* 1.85 1.91 1.86 2.66 2.59 2.68 

Note: 1) L = local buckling, D = distortional buckling; 
         2) 𝛽1, 𝛽1* and 𝛽2, 𝛽2* were determined based on the load combinations of 1.2DL+1.6LL and 1.2DL+1.5LL, respectively; 
         3) 𝛽1, 𝛽2  and 𝛽1*, 𝛽2* were calculated with the resistance factors of 0.90 and 0.80, respectively. 

 
The comparisons of ultimate moments obtained from the experiments (𝑀𝐸𝑥𝑝) and FE analyses (𝑀𝐹𝐸𝐴) 

with the predicted nominal moment capacities (𝑀𝐷𝑆𝑀−𝑆 , 𝑀𝐷𝑆𝑀−2𝑡 , 𝑀𝐷𝑆𝑀−𝑡 ) calculated by DSM 
equations are summarized in Table 3 and Table 4 for the CFS built-up open and closed section beams, 
respectively. For the built-up open sections, the mean values of experimental and numerical-to-
predicted moment capacities vary from 1.19 to 1.21 and 1.06 to 1.07 with the corresponding COV 
ranged from 0.178 to 0.183 and 0.043 to 0.064 for dominated failure modes of local buckling and 
distortional bucking, respectively. It reveals that the current DSM equations provide overall conservative 
predictions for the CFS built-up open section beams, and the predicted strengths are more conservative 
for the open sections subjected to local buckling than distortional buckling. For the built-up closed 
sections, the mean values of experimental and numerical-to-predicted moment capacities vary from 
0.84 to 0.85 and 0.96 to 0.98 with the corresponding COV ranged from 0.117 to 0.118 and 0.055 to 
0.061 for dominated failure modes of local buckling and distortional bucking, respectively. It is shown 
that the DSM equations are generally unconservative for the CFS built-up closed section beams, 
especially for the sections controlled by local buckling. It is also noticed that discrepancies between the 
predicted moment capacities (𝑀𝐷𝑆𝑀−𝑆, 𝑀𝐷𝑆𝑀−2𝑡, 𝑀𝐷𝑆𝑀−𝑡) based on the solid blocks finite strip model 
as well as the integrated built-up section models with double plate thicknesses and single plate 
thickness at the overlapped area are small.  
 
5. Conclusions 
The experimental and numerical investigations were conducted to understand the flexural behaviour of 
CFS built-up open and closed sections subjected to local buckling, distortional buckling as well as their 
interactions. In the experimental study, five minor axis bending tests were carried out on the newly 
designed built-up sections. The ultimate moments and failure modes were obtained to verify the FE 
models. In the numerical simulation, the validated FE models were employed to perform an extensive 
parametric study. A total of 107 numerical data over a wide range of sectional parameters were further 
generated. The moment capacities obtained from the tests and FE analyses were compared with the 
nominal flexural strengths determined by DSM equations that specified in the AISI S100 (2016) and 
AS/NZS 4600 (2018) to evaluate the suitability of current design rules. The elastic buckling analysis was 
undertaken using three different models including the solid blocks model as well as the integrated 
models with double plate thicknesses and single plate thickness at the overlapped area of the built-up 
sections. In general, it is found that the predicted flexural strengths calculated by codified DSM 
equations are conservative for the CFS built-up open section beams, while unconservative for the CFS 
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built-up closed section beams. Therefore, further study is underway to develop more suitable design 
guidelines. 
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The influence on portal frame buckling of different cladding systems – a 
comparative numerical study considering stressed skin effect 

 
Zsolt Nagy1, Andrea Kelemen2, Mihai Nedelcu3 

 
 
Abstract 
In 2016 the authors investigated the stressed skin effect of trapezoidal steel sheeting and of deep deck 
sheeting as roof cladding on the pitched roof portal frame structure, in terms of buckling modes and the 
load multiplication factor, by comparing the results of a traditional design model with the result of a 
numerical model including the diaphragm stiffness of the considered claddings. Later, in 2018 the 
influence of the purlin-to-beam connection stiffness on the stress skin action of trapezoidal steel 
sheeting was investigated. The study of stressed skin action was further extended by the authors to the 
effects given by sandwich panels in 2019, where a methodology was presented to including the stressed 
skin effect of sandwich panels in a simple and time effective way into the day-to-day design 
methodologies of common engineers. In 2021 the procedures were improved to present a comparison 
between different cladding types in terms of sway displacement of the frame structure with semi-rigid 
joints and load transfer by applying the developed methodology to a reference building. The purpose of 
the current paper is to compare and to estimate in a numerical manner the influence of the cladding 
type on the sway stability indicators of the structure, such as buckling modes and critical load 

multiplication factors cr. The paper presents comparative results obtained in terms of stabilization 
effects given by trapezoidal sheeting and mineral wool core sandwich panels supported by Z purlins 
applied on the reference cold-formed steel structure. 
 
 
1. Introduction 
The study of stressed skin action provided by the cladding systems of structures has a history going back 
to the early 1950s, showing that the cladding system has a stiffening effect on the framed structure. The 
structural engineer can have the choice to account or neglect these effects, but whatever the choice 
might be, both options raise a lot of technical aspects, which are not handled in a clear manner in the 
design codes. By neglecting the cladding contribution, the frame design will continue without accounting 
any beneficial effect of the stressed skin existence, and in the same time, the cladding-structure 
interaction could create some collateral effects, which could damage the primary role of the covering 
skin, such as the waterproofing, especially in case of roof cladding. However, accounting for stressed 
skin effect could also raise several issues in structural design. Firstly, stressed skin effect imposes the 
reclassification of the cladding as part of the primary structure, which means that special attention must 
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be allocated for the cladding during the building use. Secondly, the stressed skin effect consideration in 
structural calculation requires reliable structural modelling techniques, which can be used by the 
structural designer, to quantify the contribution of the cladding in overall design of the building 
structure.  Thirdly, the use of cladding as structural element can impose some special detailing rules - 
different from the usual details - which are focusing especially on load carrying capacity on cladding 
level itself and less on waterproofing. The first problem is, that designers have no clear rules, to decide 
when they need to pay special attention during design process for structure-cladding interaction. 
Secondly, if this interaction proved to be important, how would they proceed to avoid undesirable 
defects during the building use caused by cladding-structure interaction. Since modelling of roof and 
wall skin makes the calculation procedure very complex, reliable simplification methods would be the 
most efficient approach.  
 
Analytical calculation procedures for determining the shear stiffness provided by such trapezoidal sheet 
diaphragms were presented by Davies and Bryan (1982), which later, in 1995, became the basis of the 
ECCS – European recommendations for the application of metal sheeting acting as a diaphragm – 
stressed skin design (ECCS Technical Working Group 7.5. 1995). In 2014 the ECCS recommendations 
were extended to stabilization of steel structures by sandwich panel cladding (ECCS Technical Working 
Group TWG 7.9 & CIB Working Commission W056 2014). This analytical shear stiffness evaluation 
method was greatly influenced by the results of a European research project called EASIE- “Ensuring 
Advancement in Sandwich Construction through Innovation and Exploitation” (Käpplein and Misiek 
2011), which was carried out between 2008 and 2011. In current practice, this stabilizing effect of the 
cladding system is almost always disregarded, due to difficulties in applying the analytical evaluation 
methods for moderately complex structures, or to integrate these methods in a numerical approach. By 
doing so, the designer reduces the calculation time and assumes that the evaluation is on the safe side. 
However, the obtained structural response is a simplified one, which does not include cladding-structure 
interaction.  In reality, the cladding system will interact with the structure and as an effect, horizontal 
deformations will decrease. The structural configuration modelled by most of designers would be valid 
only in the case when the cladding system is damaged and is no longer able to transfer loads through its 
planar surface, which would also mean in some cases, that they are no longer able to fulfil their primary 
role as a weathering barrier against water infiltration. 
 
The influence of stressed-skin diaphragm action on the optimal design of the internal frame of a cold-
formed steel portal framing system with semi-rigid joints has been investigated by Phan et al. (2015). 
They showed that if the combined effect of both stressed-skin action and semi-rigidity of the joints are 
ignored, and the frame is designed based on a rigid joint assumption, the failure of the cladding system 
could occur before first yield of the frame. 
 
Vacev et al. (2020) studied the stressed skin effect on complex FEM models. They also proposed some 
practical guidelines for the stressed skin design using FEM, but it is hard to believe that such complex 
models will be adopted by design engineers in design process for portal frame structures, even if the 
proposed numerical model was developed for arbitrary combination of sheet profiles, fastener devices 
and sheet thicknesses. 
 
Nagy et al. (2016) focused on the stressed skin effect obtained by trapezoidal and deep deck sheeting, in 
terms of buckling modes and load multiplication factors. Later, an in-depth analysis regarding the extent 
of influence gained by the purlin-to-beam connection stiffness was developed (Nagy et al. 2018). The 
stressed skin effect study was further extended by the authors to stressed skin effect obtained by 
sandwich panels (Nagy et al. 2019a), which included a methodology to integrate the shear stiffness of 
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sandwich panel diaphragms into 3D structural models. The presented methodology was also validated 
by comparing the results of a numerical model with the experimental testing results of a sandwich panel 
diaphragm, which was performed by Kunkel and Lange (2015).  
 
The purpose of the current paper is to compare and to estimate in a numerical manner the influence of 
the cladding type on the stability indicators of the structure, such as sway buckling mode, expressed by 

critical load multiplication factor cr. The research focuses on two cladding types, by applying them on a 
reference building, namely trapezoidal sheeting and mineral wool core sandwich panels supported by Z 
purlins. 
 
2. Developed numerical models and computed results 
The reference model consists in an industrial hall type of building, composed of thin walled C250/3 
columns and beams. The structure has a span of 6 m and three bays of 3 m each, adding up to a total 
length of 9 m. The flexible wind bracings placed in the longitudinal wall of the structure are Ø20 rods, 
while the rigid wind bracings at the gable frames are of rectangular hollow steel sections SHS80x4. The 
ridge and eave pressure bars are also SHS80x4 profiles. To have a more realistic approach, the eave and 
the ridge joint semi-rigidity is included into the analysis based on previous experimental results (Nagy et 
al. 2019b), considering a stiffness of 2948 kNm/rad for the ridge joint and 2062 kNm/rad for the eave 
joint. The considered joint details can be seen in Fig. 1. 
 

  
Figure 1: Ridge joint (left) and eave joint (right) detail used in the frame. 

 
The relevant sway buckling modes and associated load amplification factors are computed for the 
considered structural models:  

• Reference model without any cladding (Fig. 2 – left); 

• Reference model with trapezoidal sheeting (Lindab LTP45 – thickness of 0.6 mm) as roof 
cladding, placed on top of Z150/2 purlins and fixed using LD6T self-drilling screws through every 
narrow trough (Fig. 2 – middle); 

• Reference model with sandwich panel (TeraSteel ISOAC5MW – mineral wool core and thickness 
of 60 mm) as roof cladding, placed on top of Z150/2 purlins and fixed using EJOT JT3 D6H 5.5/6.3 
type screws in every 250 mm (Fig. 2 – right); 

 
The same loading is applied on all three building structure, consisting in regular building loads 
(permanent loading of self-weight, snow load and wind load), which are multiplied by the typical safety 
factors, recommended by the Eurocode. The load cases are as follows:  

• (P) Self-weight of cladding: 0.25 kN/m2; 

• (S) Characteristic snow load: 1.50 kN/m2; 

• (W) Reference wind pressure: 0.40 kN/m2. 
 
The structure was modelled using 14DOF bar elements. Having a finite element with warping 
deformation, global stability is possible to be computed on 3D model. For local and distortional buckling 
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of the cold-formed profiles, effective cross section properties are computed, according to EN1993-1-3 
rules. Detailed description about the developed structural models can be found in Nagy et al. (2021). For 
simplicity, only one dominant load combination has been generated and used for comparison between 
the different models (1.35P+1.5S+1.05W). The reference structure, without any roof cladding, loaded by 
the above-mentioned load combination reaches a utilization factor of 80.7 %, while the sway type frame 
buckling can be observed at a load multiplication factor of 32.2 on the 3D model. The sway type frame 
buckling was also evaluated on a simplified 2D model, assuming same frame loading and axially rigid 
supports in the points where the roof purlins are connected to the frame. Due to this assumption, the 
sway stability of the isolated frame should result higher. Interestingly, the single frame analysis with this 

supporting condition resulted with the lowest eigen value, cr.=30.28. Analytical calculation, using the 

formula of EN1993-1-1 given by Eq. 1, seems to overestimate the eigen value, obtaining cr.=29.42. 
According to previous research results, it is expected that adding the stressed skin effect, will have a 
positive influence on the overall stability of the structure expressed by the recorded sway buckling 
eigenvalues. The comparison between computed load multiplication factors on 2D and 3D structural 
models have a key importance in the current study. Furthermore, the computed values with FEM are 

compared with the analytically calculated values of load multiplication factor cr, using simplified 
method of EN1993-1-1 given by Eq. 1. 
 

 



















=

EdHEd

Ed
cr

h

V

H

.
  (1) 

 
where HEd is the total design horizontal load, VEd is the total design vertical load, h is the story height, 
and δH.Ed is the horizontal displacement at the top of the story. 
 

 
 
Figure 2: Analyzed structural configurations: structure only (left), structure with trapezoidal sheeting roof cladding 

(middle) and structure with sandwich panel roof cladding (right). 

 
2.1 Results for roof skin using trapezoidal sheeting and Z purlins 
The trapezoidal sheeting for the roof diaphragm was modelled by equivalent hat (omega) profiles, as bar 
element. The omega profiles composing one trapezoidal sheet were connected via continuous links. At 
side overlaps, where two trapezoidal sheets are fixed with seam fasteners, the edge omega profiles 
were connected with semi-rigid links (Nagy et al. 2021).  The link elements should be free to rotate, 
while the stiffness in x and y direction should be set as the individual panel rigidity given by the seam 
fasteners (1/c2.2 – determined as in the ECCS recommendations (ECCS Technical Working Group 7.5. 
1995) divided by the number of seam fasteners on a shear panel. The rigidity of the shear panel given by 
seam fasteners (1/ c2.2) was determined as 19.246 kN/mm, which was divided by 27 (the number of 
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seam fasteners in one shear panel). Thus, the link, representing the seam fasteners, resulted a stiffness 
of 0.713 kN/mm in x and y direction and was free to rotate. The self-weight of the elements 
representing the cladding and their connections were disregarded. Details concerning the modelling of 
the cladding and the sway buckling mode on the 3D model is presented in Fig. 3. The ultimate shear 
capacity of the trapezoidal sheeting diaphragm was estimated as 7.171 kN, in accordance with the ECCS 
recommendations (ECCS Technical Working Group 7.5. 1995), this being equal with the ultimate applied 
load on the intermediate frames. Under the assumed load combination, the maximum shear force at 
intermediate frames was 4.95 kN, which was significantly lower than the ultimate shear capacity of the 
trapezoidal sheeting diaphragm. 
 
In case of the 2D frame model, the cladding effect was introduced by equivalent sway deformation, 
using a spring stiffness (Fig. 4), which leads to same frame deformation as it was obtained on 3D model. 
In case of roof skin using trapezoidal sheeting and Z purlins, under the considered load combination a 4 
mm sway deformation was evaluated, resulting an equivalent eave spring stiffness of 0.47 kN/mm 
(Table 1). The computed load multiplication factors for 2D and 3D structural models are centralized in 
Table 2.  
 

 
Figure 3: Cladding modelling details (left) and sway buckling mode on 3D model (right), in the case of structure 

with single skin trapezoidal sheeting 

 

 
Figure 4: 2Dframe model with equivalent eave spring 

 
2.2 Results for roof skin using sandwich panels and Z purlins 
In the case of the sandwich panel cladding, the individual steel plates, representing the panels were not 
connected to one another, since the presence of seam fasteners was disregarded. The width of the steel 
plates was considered as the distance between the outer-most screws which fix the sandwich panel to 
the purlin. The translational stiffness of the fasteners connecting the sandwich panels to the purlins (kv) 
was evaluated as 2.688 kN/mm, which results in a flexibility (1/kv) of 0.372 mm/kN. The Consteel model 
calibration can be found in Nagy et al. (2021). The obtained cross-section for purlin connection was 
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⌀17.68 circular rod, with a length of 105 mm. The cladding modelling details and the sway buckling 
mode on 3D model can be seen in Fig. 5. The load-bearing capacity of the fastener between the purlins 
and the sandwich panels was determined as being equal to 1.18 kN, which under the assumed load 
combination was exceeded by approximately 23 %, considering the most utilized fastener. In case of the 
2D frame model, similarly as in case of trapezoidal sheeting skin, the cladding effect was introduced by 
equivalent sway deformation, using a spring stiffness, which leads to same frame deformation as it was 
obtained on 3D model. In case of roof skin using sandwich panels and Z purlins, under the considered 
load combination a 4.3 mm sway deformation was evaluated, resulting an equivalent eave spring 
stiffness of 0.42 kN/mm (Table 1). The computed load multiplication factors for 2D and 3D structural 
models are centralized in Table 2. 
 

 
Figure 5: Cladding modelling details (left) and sway buckling mode on 3D model (right), in the case of structure 

with sandwich panel cladding 

 
Table 1: Spring coefficient values for 2D frame calculation 

Model  HEd (2D/3D) keq 
 (mm) (kN) (kN/mm) 

Trapezoidal sheeting 4.0 2.40/2.50 0.47 
Sandwich panel 4.3 2.48/2.97  0.42 

Frame only (reference) 10.2 4.15/4.27 - 

 

Table 2: Load multiplication factor (cr) values 

Evaluation procedure Only 
structure 

Structure with 
trapezoidal sheeting 

Structure with 
sandwich panels 

FEM 3D  32.2 123.23 77.43 
FEM 2D 30.28 64.42  60.84 

Eq. 1 (EN1993-1-1) 29.42 46.27  50.37 

 
3. Discussions 
The comparative results on the 3 studied models (frame only, structure with trapezoidal skin and 
structure with sandwich panels) shows that stressed skins have a stiffening effect on the frame 
structure, reducing considerable the deformations under the same applied loads. Using as reference the 
structure only, without any cladding, the sway deformation under considered loads resulted 10.2 mm. 

Making the evaluation of sway stability of the frame, the load multiplication factor cr, using simplified 
method of EN1993-1-1 given by Eq. 1 resulted 29.42.  
 
The computed analytical value seems to be lower than those computed on 2D or 3D structural models 
(30.28 for 2D frame and 32.2 for 3D frame). However, the analytical formula is approximative, applicable 
in case of non-significant rafter compression loads, which can be a limitation in case of bigger scale 
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framed structures, where axial loads in the rafter can be significant.  Considering the 2D frame model 

with equivalent spring stiffness (Fig. 4) there is a reasonable correlation between the obtained cr 
values, using analytical and FEM calculation on 2D model. The values computed on 3D models using 
linear elastic analysis (LEA) are much higher for both cladding types. Anyway, as it was observed also in 
Nagy et al. (2021) , the diaphragm composed of trapezoidal sheeting offers a higher stabilizing effect 
and a higher shear capacity, than sandwich panel diaphragm. Furthermore, under the considered load 
level, the sandwich panel diaphragm exceeds the evaluated shear capacity, meaning that the sandwich 
panel stiffness may decrease under the effect of design loads. This means, that the behavior of the 
sandwich panel after that point should not be regarded as linear and internal face failure around the 
fixing screws to purlin will occur. The stabilization effect of sandwich panel beyond the capacity limit will 
decrease, the frame behavior with cladding tending to reach the frame only behavior. This will not be a 
simultaneous effect for all the frames, it will be a gradual process, as the connections of the sandwich 
skin will fail step-by-step, without reaching any ultimate limit state stage in the framed structure. The 
mechanism in case of the trapezoidal sheeting skin will be similar, but different, due to the much higher 
elastic deformation capacity (Nagy et al. 2021). Due to the differences in deformation capacity between 
the sandwich panels and trapezoidal sheeting, trapezoidal sheeting skin will be able to preserve the 
stabilizing effect for a longer time period. Due to this property, frame-cladding interaction will have less 
effect on the trapezoidal skin than on sandwich panel skin. On the other hand, due to this difference in 
cladding behavior, in case of a larger scale structure, there will be important differences in sway stability 
of internal frames, even if the frames will be identical.  
 
At the same time, as it was observed also by Phan et al. (2015), there is a migration of loads to the gable 
frames (these frames are acting as support for roof diaphragm), for this reason, gable frames need to be 
adequately designed for these supplementary effects. The load redistribution to the gable frames is 
clearly evidenced by the differences in total horizontal reactions HEd, computed at the internal frame 
column base between the models with and without stressed skin (Table 1).  
 
4. Conclusions 
Two specific methodologies were presented for the inclusion of the diaphragm action of roof claddings 
into a 3D structural analysis of a building structure: one for sandwich panels and one for trapezoidal 
sheeting. Both procedures were validated on panel models by comparing the results obtained through 
the proposed combined analytical and numerical procedures, with the results of experimental testing, 
described in Nagy et al. (2021). The comparisons between test results and developed panel models in 
terms of deformations are reasonable and proposed methodologies can integrate the desired 
phenomenon on 3D structural models in an easy and fast way, giving the possibility for structural 
engineers to deal with the interaction of structure-cladding interaction and simplified approach for sway 
stability evaluation. 
 
As the case study shows, the structure-cladding interaction can highly influence the sway stability of the 
structure on which it is applied: without cladding the structure can be classified as sway, with cladding 
contribution the structure can migrate in a non-sway category, but depending on the cladding behavior, 
part of the structure or the overall structure can become again sway sensitive, considering the cladding 
deformation capacity. Claddings with sandwich panels have more reduced deformation capacity 
compared to claddings with trapezoidal sheeting. Due to this, cladding-structure interaction can affect 
the integrity of the sandwich panel primary role as waterproofing, especially in the cases when cladding 
contribution is totally disregarded in the design process of the framed structure. It should be noted, that 
under the considered loads, the sandwich panel diaphragm exceeded the evaluated shear capacity, 
meaning that the sandwich panel stiffness may decrease under the effect of design loads. Assuming a 
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linear elastic analysis and using a constant diaphragm stiffness, if the cladding deformation limit is 
exceeded, such a model can underestimate the real structural deformation. For more consistent 
calculation, bilinear behavior should be included in the model with sandwich panel roof claddings.    
 
Developed structural models shows that sway stability of real structures can present large scattering 
depending on the deformation capacity of the applied claddings and can offer a better understanding of 
structural behavior for practicing engineers. Load multiplication factor evaluation would be limited to 
the values obtained from the simplified 2D analysis. 
 
The results of the two structural models should not be generalized, since these values may vary if the 
number of utilized fasteners is increased or if the type of used fasteners is changed. For in-depth 
understanding of the two shear diaphragms, research will continue with laboratory testing and 
parametric study. 
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Pulse Buckling of a Thin-Walled CFRP Cylindrical Shell – A Numerical Approach 
 

Monika Zaczyńska1, Haim Abramovich2, Chiara Bisagni3 
 
 
Abstract 
The present study investigates the behaviour of a CFRP cylindrical shell under compressive pulse loading. 
The in-pulse analyses are performed numerically, using the finite element code ABAQUS. The dynamic 
buckling load is determined using the Budiansky & Hutchinson criterion. Parameters like the shape of 
pulse loading and pulse duration were varied, and their influence on the Dynamic Load Factor (DLF) was 
investigated. The investigation shows that DLF tends to increase well above unity for short duration 
impulses, while for the larger duration the value is decreasing towards unity. The shape of the pulse also 
has a significant influence on the DLF value. DLF<1 was found only for a trapezoidal pulse. For sinusoidal 
pulse shape, the static buckling load of the CFRP shell was consistently below the dynamic one. 
 
 

1. Introduction 
 

The topic of applying an axially time-dependent load onto a column, thus inducing lateral vibrations and 
eventually causing the buckling of the column, was studied for many years. Sometimes this is called 
vibration buckling, as proposed by Lindberg [1]. As described in his fundamental report [1], the axial 
oscillating load might lead to unacceptable large vibrations amplitudes at a critical combination of the 
frequency and amplitude of the axial load and the inherent damping of the column. This behaviour is 
presented in Fig. 1a, where an oscillating axial load induces bending moments that cause lateral vibrations 
of the column. As described in [1], the column will laterally vibrate at a large amplitude when the loading 
frequency will be twice the natural lateral bending frequency of the column. The term used by Lindberg, 
vibration buckling, presents some kind of similarity to vibration resonance. However, in the case of 
vibration resonance, the applied load is in the same direction as the motion, namely lateral to the column, 
and the resonance will occur when the loading frequency equals the natural frequency of the column. 
This type of vibration buckling was called by Lindberg as: dynamic stability of vibrations induced by 
oscillating parametric loading. This type of resonance is also named in the literature as parametric 
resonance (see [2] and [3]).  
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Figure 1: (a) Buckling under parametric resonance, (b) Pulse-type buckling [1].  

 

Another type of vibration is sometimes also called pulse buckling. The structure will be deformed to 
unacceptably large amplitudes as a result of the transient response of the structure to the dynamic axially 
applied load [1]. One should note that the suddenly applied load might cause a permanent deformation 
due to the plastic response of the column, a snap to a larger post-buckling deformation or simply a return 
to its undeformed state. An example can be found in Fig. 1b, where the high-order buckling mode under 
short load duration is presented. 

Loss of stability under pulse loading is associated with the rapid increase of structure deformations (e.g. 
Volmir or Budiansky-Hutchinson criteria) or achieving a given stress level (e.g. Petry-Fahlbusch criterion). 
It was observed that the structure could withstand a higher axial load before reaching the buckling 
condition, provided the load duration is short enough. Petry and Fahlbusch [2] observed an almost 
fourfold increase of dynamic buckling load when a very short load duration is analyzed. However, with 
the rise of load duration, it was observed that the structure is less resistant to pulse load than the static 
one [3]. 
The dynamic buckling of structures has been widely addressed in the literature. It started with the famous 
paper by Budiansky and Roth [5], through Hegglin's report on dynamic buckling of columns [6] and 
continued with Budiansky & Hutchinson [7] and Hutchinson & Budiansky [8] in the mid-sixties.  
It is difficult to define a criterion of the critical load causing the structure to buckle under the subjected 
pulse loading. As presented by Kubiak [9] and also by Ari Gur [10], [11],[12] a new quantity is introduced 
called DLF (Dynamic Load Factor) to enable the use of the dynamic buckling criteria. It is defined as: 

 
( )

( )
.cr dyn

cr static

PPulse Buckling AmplitudeDLF
Static Buckling Amplitude P

   (1) 

According to Kubiak [9], the most popular criterion had been proposed by Volmir for plates subjected to 
in-plane pulse loading. As quoted in [9], Volmir proposed the following criterion: 
"Dynamic critical load corresponds to the amplitude of pulse load (of constant duration) at which the 
maximum plate deflection is equal to some constant value k (k - half or one plate thickness"). 
Another very widely used criterion has been formulated and proposed by Budiansky &Hutchinson 
[5],[7],[8]. Originally, the criterion was formulated for shell-type structures but was also used for columns 
and plates. The criterion claims that:" Dynamic stability loss occurs when the maximum deflection grows 
rapidly with the small variation of the load amplitude".   
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2. FE model and methodology 

The analyses were performed on a CFRP cylindrical shell with the laminate stacking sequence 
[±450/00/900]s. The considered cylindrical shell has a radius R = 300 mm, the length L = 705 mm and the 
total thickness t = 1.448 mm (eight plies, each with the thickness of 0.181 mm). The mechanical properties 
of CFRP are listed in Table 1.   

Table 1: Mechanical properties of AS4/8552 CFRP. 

 E1 E2 12 G12  

 (GPa) (GPa) (-) (GPa) (g/cm3) 

AS4/8552 CFRP 145 10.3 0.3 4.5 1.58 

 
The numerical model of the cylindrical shell was created in ABAQUS 2017 using S4R shell elements. The 
finite element length is equal to 7.5 mm and was determined by the convergence analysis. The boundary 
conditions were applied to the nodes localized in both shell edges: in the bottom edge, all degrees of 
freedom are removed, while on the top one, only the axial displacement was possible. The loading was 
applied as a compressive force to one point localized on the upper edge and then transferred to all nodes 
at this edge. The assumed boundary conditions correspond to conditions assured during the laboratory 
test [12, 13]. 
In the investigation of the CFRP shell resistance to pulse loading, the following studies were performed:  

a) Static buckling analysis – the analysis aims to determine the static buckling load and 
corresponding buckling shape. The study was performed numerically using the eigenvalue 
buckling analysis and dynamic explicit analysis. The numerical investigations were compared with 
the analytical calculations and with the results of the laboratory test [12, 13]. 

b) Modal analysis – modal analysis was carried out to define the natural frequency of the shell, and 
next - the natural bending period of the shell Tb. The outcomes of numerical calculations were 
confronted with laboratory test [12, 13]. 

c) Dynamic buckling analysis – pulse buckling analyses were performed numerically using the Explicit 
method. The shell is subjected to the pulse axially compressive loading, with the amplitude being 
a fraction or a multiplier of the static buckling load. The structure is loaded with various pulse 
shape (trapezoidal and sinusoidal), with the time being a fraction or a multiplier of the natural 
period of the shell. The numerical analyses were performed for the shell with initial geometric 
imperfections that corresponds to the lowest buckling mode. 

 

3. Static buckling and modal analysis 
 
The buckling load Pcr was determined analytically according to the following formula [15]: 

 𝑃𝑐𝑟 =
2𝜋3𝑅𝐷11

𝐿2 [𝑚2 (1 + 2
𝐷12

𝐷11
𝛽2 +

𝐷22

𝐷11
𝛽4) +

𝛾2𝐿4

𝐷11𝜋4𝑚2𝑅4

𝐴11𝐴22−𝐴12
2

𝐴11+(
𝐴11𝐴22−𝐴12

2

𝐴66
−2𝐴12)𝛽2+𝐴22𝛽4

] (2) 

where:  L, R – length and the radius of the cylinder, respectively 
n, m – number of half-waves in the circumferential and axial directions,  

𝛽 – buckle aspect ratio (𝛽 =
𝑛𝐿

𝜋𝑅𝑚
),  

Aij, Dij  – elements of the extensional stiffness matrix and bending stiffness matrix   
γ – a correction factor, in the considered case γ=0.446 

The static buckling load was also determined numerically and compared with the experimental data. In 
the numerical calculations, the eigenvalue analysis was performed. Next, the non-linear analysis for the 
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model with initial geometric imperfections with the shape corresponding to the lowest buckling mode 
and the imperfections amplitude equal to 20% of the shell thickness (w0=0.2t) was carried out.  
The results comparison is presented in Fig. 1 and Table 2. In Fig. 1, the comparison of buckling modes with 
the equilibrium paths obtained from laboratory test and non-linear analysis with initial imperfection is 
presented. In the upper left corner, the lowest buckling mode obtained from LB (Linear Buckling) analysis 
is also depicted. Significantly high results agreement was obtained in the buckling load estimation. A slight 
difference in the structure's stiffness in the pre-buckling regime and the buckling modes was obtained. 
This discrepancy could result from different imperfections, which were not applied to the FE model as 
thickness imperfection. 
The comparison of buckling load obtained from analytical and numerical approach present high 
correlation. Similarly, the high agreement of the results was obtained from laboratory test and from FE 
non-linear analysis, where the buckling load of the imperfect structure was studied. The difference 
between results obtained from the experiment and FE analysis is less than 1% which confirms the 
correctness of the adopted numerical model and its application to further dynamic buckling analyses. 

 
Figure 1: Comparison of equilibrium path obtained from experiment [16] and FE analysis. 

Table 2: Static buckling load of the analyzed shell. 

Method Pcr [kN] 

Analytical formula 426.2 

FEM Linear buckling analysis 402.6 

FEM Explicit analysis 299.8 

Laboratory test 301.2 
 

To determine the natural period of duration, a modal analysis was performed. The lowest natural 
frequency obtained from FE analysis fFE=293.8Hz, while from laboratory test fEXP=243Hz. The significantly 
high difference in natural frequency estimation is a consequence of the applied boundary conditions. The 
boundary conditions assured during the numerical analysis differs slightly from these assumed in 
laboratory test. 

3. Dynamic buckling analysis 
 
The dynamic buckling analysis was performed for the model with initial geometric imperfections w0=0.2t. 
From numerical calculations, the first natural bending period Tb = 3.40 ms was determined. The structure 
was subjected to pulse loading with six different load duration, being a fraction or a multiplier of Tb (T = 
0.43ms, T = 0.85ms, T = 1.70ms, T = 3.40ms, T = 6.80ms and T/T = 17.00ms). Different pulse shapes: 
trapezoidal and sinusoidal, were considered. The trapezoidal pulse shape could be described by the 
following equation: 
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0 ≤ 𝑡 ≤ 0.1𝑇      𝑃(𝑡) =
10𝑃0

𝑡
           

 0.1𝑇 ≤ 𝑡 ≤ 0.9𝑇     𝑃(𝑡) = 𝑃0 (3) 

0.9𝑇 ≤ 𝑡 ≤ 𝑇      𝑃(𝑡) =
−10𝑃0

𝑡
         

The sinusoidal pulse shape is defined as: 

 0. 𝑇 ≤ 𝑡 ≤ 𝑇     𝑃(𝑡) = 𝑃0sin (
𝜋𝑡

𝑇
) (4) 

To assess the shell resistance to pulse loading, the structure was observed in the time T60Tb. Dynamic 
Load Factor was estimated by the application of the Budiansky & Hutchinson (B&H) criterion. The details 
of the B&H criterion application are presented in [17]. The high sensitivity to initial imperfections 
characterizes shell structures [18, 19]. Thus, DLF was calculated according to eq. 1, assuming that the 
static buckling load Pcr is the buckling load obtained from non-linear analysis for a model with initial 
geometric imperfection (Pcr =299.8kN). 

 

Figure 2: The effect of pulse duration and pulse shape on the Dynamic Buckling Load. 

In Fig. 2, the change of Dynamic Buckling Load with the increase of load duration for the shell subjected 
to trapezoidal- and sinusoidal-shaped pulse load is presented. For load duration lower than the first 
natural bending period of the structure (T<3.40ms), for both considered pulse shapes, the shell is 
significantly more resistant to pulse load than the static one. In this regime, the resistance increases with 
the decrease of the load duration (up to Pdyn=1800kN for sinusoidal pulse load and Pdyn=600kN for 
trapezoidal pulse load; for load duration T=0.43ms). A different tendency is observed for T>3.40ms (T>Tb), 
where the Dynamic Buckling Load is almost unchanged for 3.40ms<T <17ms.For trapezoidal pulse shape, 
the dynamic buckling load is near the static buckling load in that load duration regime. Comparison of two 
pulse shapes reveals higher resistance to pulse loading for sinusoidal pulse shape than the trapezoidal 
one. The pulse shape has the most significant effect on the Dynamic Buckling Load for a short load 
duration (T=0.43ms). For that load duration, the Dynamic Buckling Load is three times higher for sinusoidal 
pulse load than trapezoidal load shape. With the increase of load duration, the influence of load shape on 
the buckling resistance decreases slightly. Nevertheless, the dynamic buckling load for sinusoidal pulse 
shape is at least thirty percent higher than the trapezoidal one. The lower dynamic buckling load obtained 
for the trapezoidal pulse shape could be explained by the high value of the pulse energy [19]. Pulse energy 
is described as the area under the curve representing the time dependence of load. The trapezoidal pulse 
shape is characterized with higher pulse energy, than the sinusoidal one. This tendency is reflected in 
Dynamic Pulse Load (Pdyn) and Dynamic Load Factor (DLF)(Table 3). 
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Table 3: Dynamic Buckling Load and Dynamic Load Factor for analyzed pulse shapes and load duration 

  Load duration [ms] 
  0.43 0.85 1.70 3.40 6.80 17.00  

Trapezoidal pulse shape Pdyn [kN] 600 500 340 340 285 280 

DLF [-] 2.00 1.67 1.13 1.13 0.95 0.93 

Sinusoidal pulse shape Pdyn [kN] 1800 1300 840 620 460 370 

DLF [-] 6.01 4.34 2.80 2.07 1.54 1.23 

 
Load duration  

[ms] 
Trapezoidal  
pulse shape 

Sinusoidal 
 pulse shape 

0.425 

  

0.85 

  

1.7 

  

3.4 

  

6.8 

  

17 

  
Figure 3: Buckling modes for trapezoidal pulse shape. 

The effect of pulse duration and pulse shape on the buckling mode was also studied. The results are 
presented in Fig. 3. High sensitiveness of load duration on the buckling mode was obtained. A diamond 
shape is noticed for lower load duration, while the increase of the load duration leads to the appearance 
of the oblique waves. 
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4. Conclusions 
The dynamic buckling behaviour of a composite cylindrical shell has been studied numerically using the 
ABAQUS code. The numerical model was validated experimentally on the shell subjected to static axial 
compressive loading. To assess the resistance of the structure to pulse loading, the Budiansky & 
Hutchinson criterion was applied. The effect of the load duration and pulse shape was investigated. The 
high impact of load duration on dynamic buckling resistance was observed. For load duration lower than 
the natural period of duration, the shell structure is few time more resistant to pulse loading compared 
to the static load. For duration longer than the natural bending period of the shell the Dynamic Buckling 
Load is almost unchanged with the increase of load duration. The high effect of the pulse shape was also 
analyzed. Two different shapes of pulse load were studied: sinusoidal and trapezoidal. Higher value of the 
Dynamic Load Factor was obtained for sinusoidal pulse shape than for trapezoidal shape. 
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Abstract 
The dynamic buckling phenomenon of hybrid multilayer Fiber Metal Laminate structure was presented. 
The analysis was performed on short thin-walled channel section columns subjected to axial compressive 
impulse loading. The dynamic buckling investigation was carried out numerically using the Finite Element 
Method. Three samples differentiate in the laminate stacking sequence were considered. The analysis of 
dynamic buckling phenomena was performed using both geometric criteria and failure criteria. This 
approach allows getting to know the behaviour of the multilayer FML structure under pulse loading. The 
effect of initial geometric imperfection, laminate stacking sequence and the shape of the pulse load on 
the dynamic stability was also analysed. Results depicted the lowest resistance of the investigated 
channel FML columns to the rectangular-shaped pulse loading and the lowest one - for the columns 
subjected to triangular-shaped pulse load. Three analysed profiles, varying in GFRP stacking sequences, 
presented similar behaviour under pulse compressive loading. The parametric analysis reveals the 
yielding of the aluminium outer layers as a dominant failure mechanism in FML composite.  
 
1. Introduction 
In the aerospace industry, the strength to weight ratio is a crucial factor during the design process. Thus 
thin-walled structures are commonly used. Nowadays, GLARE structures are used, e.g. as elements of 
stiffening the fuselage [1]. Stringers are usually implemented to the fuselage as channel, zed and omega 
section thin-walled profiles. Thin-walled structures are prone to the loss of stability which is a very 
dangerous phenomenon for them. Buckling of the structure can occur under both static and dynamic 
loading. Aerospace constructions are usually subjected to impulse loading. Nevertheless, currently, the 
aircraft design and certification procedures are based on non-restrictive static loads, often leading to 
overestimating design weight. Simultaneously, numerous studies have shown that the structure 
behaviour under dynamic pulse load is more complex than that under static loading.  
Multilayer structures in the aerospace industry, such as GLARE (Glass laminate aluminium reinforced 
epoxy), are commonly used. Fibre Metal Laminate materials have many advantages resulting from used 
components. The combination of lightweight materials - aluminium alloy and fibre composite, allows 
expected high strength to weight ratio to achieve. The FML structure is approximately 10% lighter than 
aluminium alloy while maintaining similar strength. However, the critical advantage of the hybrid FML 
structure compared to classic composite materials is high resistance to crack propagation [2, 3]. 
Nevertheless, the FML structure also has some drawbacks. They include a complex failure mechanism 
which may occur, like in metals, due to a crack. However, in multilayer structures, the phenomenon of 
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fibre breaking, matrix breaking, debonding of fibres from the matrix or delamination could occur. For 
this reason, the strong necessity to get to know the response of thin-walled FML structure under 
dynamic pulse loading exists [4]. The obtained results will significantly broaden the knowledge in the 
field of dynamic stability of thin-walled multilayer structures. 
 
2. Subject of the study and methodology 
The analyses were performed on short columns made of FML material. The GLARE structures consisted 
of three metal layers, and two doubled prepreg sheets were investigated. The mechanical properties of 
FML constituents (2024-T3 - an aluminium alloy and TVR 380 600 M12 26% R-glass - glass unidirectional 
epoxy fibre-reinforced prepreg) determined experimentally and analytically [5 - 7], together with the 
stress limits, are listed in Table 1. 
The thickness of the individual aluminium sheet is equal to tal = 0.30 mm while the composite layer tp = 
0.26 mm, which gives the total wall thickness of tt = 1.94 mm. Three FML stacking sequences of different 
fiber orientation in the GFRP layers, were considered: C1 [Al/0/90/Al/90/0/Al]s, C2 [Al/90/0/Al/0/90/Al]s 

and C5 [Al/0/0/Al/0/0/Al]s.  
 

Table 1: Mechanical properties and stress limits of FML's constituents. 

TVR 
380/26% 

E1 E2 12 23 G12 G23 XT XC YT= ZT YC= ZC S  
(GPa) (GPa) (-) (-) (GPa) (GPa) (MPa) (MPa) (MPa) (MPa) (MPa) [g/cm3] 

53.90 14.92 0.28 0.40 5.49 5.33 1534 800 75 500 58 1.8 

Al 2024-
T3 

E  Et R0.2         
(GPa) (-) (GPa) (MPa) [g/cm3]        

77 0.3  0.77 359 2.7        

 

       
 

Figure 1: Overall dimensions of considered channel section FML column. 

 

The channel section profiles were L = 300 mm long. The width of the column web was equal to 80 mm, 
while the flanges 40 mm. The corner radius of the web and flange junction equals 1.75 mm. The buckling 
analyses were carried in few steps out using ANSYS 2018 finite element commercial software [8]. 
1) Static buckling analysis 
The phenomenon of loss of stability under static compressive loading was analyzed in the linear 
eigenvalue buckling analysis. The Block Lanczos method was used. A linear static buckling analysis was 
conducted to determine the magnitude of the buckling load and corresponding to its buckling mode. 
Results of the numerical studies were confronted with the results of laboratory tests. 
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2) Modal analysis 
Modal analysis was carried out numerically to obtain the natural frequencies of the FML column. The 
period of fundamental natural flexural vibrations of analysed column T was used in the dynamic buckling 
analysis as a reference time for pulse duration.  
3) Dynamic buckling analysis 
The implicit Newmark time integration method was applied in the transient analyses. To get to know the 
behaviour of GLARE column under pulse loading, a parametric study was performed for studding the 
effect of the laminate stacking sequence and pulse shape. Critical dynamic buckling load was assessed 
based on dynamic stability criteria and failure criteria. Following criteria were applied: Volmir criterion 
[9], Budiansky-Hutchinson (B&H) criterion [10], the Petry-Fahlbusch (P&F) criterion [11] and LaRC04 
failure criterion [12].  

 

3. FE model 
Numerical calculations were conducted in the environment of Ansys software based on FEM. The 
channel profile model was meshed with the SHELL181 elements. The geometrical model reflects the 
middle surface of all panel walls. In the nodes representing the bottom columns support, the 
displacement in the direction perpendicular to the walls and in the direction along the axis of the 
column was set to zero. In the nodes located in the upper column edge, the direction perpendicular to 
the wall was also constrained. For those upper nodes, a constant value of displacement along the 
column axis was coupled. The analysed columns were subjected to uniaxial compression. The constant 
displacement of the loaded edge was ensured thus, the loading was applied as a compressive force at 
one node. To reflect the laboratory test conditions [13] (a shallow grove), the movement in the direction 
perpendicular to the walls in the distance c.a. 0.5mm at both columns edges was constrained. A detailed 
description of the numerical model could be found in [14]. 

 
Table 2 Buckling load and period of flexural natural vibrations. 

 
Method 

Sample  

 C1 C2 C5  

Buckling load Pcr [kN] 
FEM 29.384 29.016 29.547  

Experiment 31.453 - 29.836  

Period of natural flexural  
vibrations Ti [ms] 

FEM T1 1.980 1.913 2.007  

FEM T2 1.374 1.342 1.392  

FEM T3 1.357 1.322 1.362  

FEM T4 1.072 1.045 1.081  

FEM T5 0.930 0.934 0.927  

 
4. Results 
4.1. Static buckling test and modal analysis 
The static buckling analysis was performed numerically, and then the results were compared with the 
outcomes of the laboratory test. During the experiment, the static buckling analysis was performed for 
sample C1 and C5. Buckling loads were determined from Linear Buckling Analysis in FEA and 
experimentally using the P-w method, the P-w2 method, the Koiter's approach, the inflexion point 
method [14]. The results of FE computations and the average value of critical load from laboratory test 
are presented in Table 2. The comparison of the period of flexural vibration for five modal modes is 
listed also. Significantly high results agreement between the analysed samples was obtained, both in the 
buckling load and period of natural vibration. It confirms the dominant role of aluminium layers in the 
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FML structure response. The differences in the buckling load estimation are less than 7%, which 
confirms the FE model's correctness. 

 
Figure 2: Modes for sample C1: a) first buckling mode from FEM, b) buckling mode from the test, c) the first modal 
mode, d) the second modal mode, e) the third modal mode, f) the fourth modal mode, g) the fifth modal mode. 

 
For one exemplary sample, the shape of the buckling and modal modes were compared, as presented in 
Fig. 2. It should be mentioned that the same shape of buckling and the modal mode was obtained for all 
analysed profiles. Fig. 2a and Fig. 2b show the buckling mode obtained from Ansys software and 
laboratory test. After buckling, three half-waves in the longitudinal direction arose. When the modal 
modes are analysed (Fig. 2c-g), one can observe that just the fifth modal mode corresponds to the 
lowest buckling mode. Thus, in the further dynamic buckling analyses, it was decided to assume the 
pulse load duration equal to T5 the period of fifth mode of natural vibration. 
 

Table 3 Equation described the considered buckling shapes. 

 
Pulse shape  

Rectangular Triangular Sinusoidal  

Equation 
0 ≤ 𝑡 ≤ 𝑇  𝑃(𝑡) = 𝑃0 0≤ 𝑡 ≤ 𝑇  𝑃(𝑡) =

𝑃0

2𝑡
 0 ≤ 𝑡 ≤ 𝑇  𝑃(𝑡) = 𝑃0sin⁡(

𝜋𝑡

𝑇
)  

𝑇 ≤ 𝑡 ≤ 2𝑇  𝑃(𝑡) = 0 𝑇 ≤ 𝑡 ≤ 2𝑇  𝑃(𝑡) = 0 𝑇 ≤ 𝑡 ≤ 2𝑇  𝑃(𝑡) = 0  

 
4.5. Dynamic buckling analyses 
In the dynamic buckling analyses as a benchmark of the structure resistance to pulse loading, the critical 
value of Dynamic Load Factor (DLFcr) was assumed. The DLF was defined as the ratio of pulse amplitude 
(P0) to the lowest static buckling load (Pcr) [14]. The structure response to pulse loading was monitored 
in time twice the pulse duration, i.e., t = 2T5. In the dynamic buckling investigation introduced an initial 
geometric imperfection of the lowest buckling mode shape with the amplitude w0=0.1tt. The research 
was performed for three stacking sequences C1, C2 and C5 and three pulse shapes: rectangular, 
triangular and sinusoidal. Equations described the pulse load for considered shapes are listed in Table 3.  
During the analysis, two parameters were tracked: Uxmax/tt and UxLBA/tt. Uxmax/tt is defined as the ratio of 
the maximum absolute value of the deflection (observed during dynamic analysis) to the total column 
wall thickness. UxLBA is the deflection of a point in the flange, where the maximum absolute value of the 
deflection was observed in the Linear Buckling Analysis (LBA) solution. Firstly, the effect of the pulse 
shape on the dynamic buckling resistance was studied. As an example, results for sample C5 are 
presented in Fig. 3. Based on the change of dimensionless deflection with the increase of the pulse load, 
one can observe the pronounced effect of the pulse shape on the structure response. The highest 
deflection for rectangular-shaped pulse load was perceived and the lowest one for triangular pulse. 

However, in the range DLF = 1.6  1.8 the maximum deflection in the column subjected to the sinusoidal 
and triangular pulse load obtains similar values. During the analysis, the failure in the FML component 

a)                  b)                      c)                   d)                   e)                   f)                    g)   
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was also tracked. The failure initiation in at least one layer is depicted in Fig. 3 by red dots. It could be 
observed that for the highest linear impulse magnitude - rectangular one, failure initiated for DLF = 1.2, 
while for the others, the damage started for DLF = 1.4.  
 

 
Figure 3: The influence of the shape of the pulse load on the dynamic response for sample C5.  

 
In Table 4, the map of failure in FML components under the loading leading to the first layer failure is 
presented. For the triangular pulse, the failure in one layer (L1) appeared under the loading of DLF = 1.4. 
For the sinusoidal pulse load, the yielding in two layers occurred (L1 and L7) for the same pulse 
amplitude. With the increase of the pulse amplitude [14] - for rectangular-shaped pulse load, the failure 
was observed for lower load amplitude - for DLF = 1.2. A significant influence of pulse shape on the 
failure localization was observed too. For triangular and rectangular pulse loading, the failure has begun 
at the column bottom edge. In contrast, for the sinusoidal loading, it was localized in the channel half-
height. For each considered layer arrangement, the failure initiates in the outside metal layers. 
 

Table 4 The influence of the shape of the pulse load on the FML C5 sample component's failure initiation. 
Triangular pulse shape Sinusoidal pulse shape Rectangular pulse shape 

Layer L1 Layer L4 Layer L7 Layer L1 Layer L4 Layer L7 

 


max
=360MPa 

 


max
=363MPa 

 


max
=362MPa 

 


max
=364MPa 

 


max
=360MPa 

 


max
=364MPa 

 
In Table 5, the critical values of the Dynamic Load Factor are listed. For the Volmir criterion, the exact 
value of DLFcr was determined, while for the others, the range of pulse load was assessed. The B&H 
criterion was the range with the most rapid deflection increase, while for Volmir and LaRC04 – the range 
of pulse amplitude where the failure could initiate. Based on the results presented, it could be observed 
that the dynamic deflection criteria (Volmir and B&H) are in an agreement with failure criteria. The 
LaRC04 criterion overestimates the critical pulse load amplitude. The other criteria present high 
agreement in coefficient DLFcr estimation. The highest resistance to pulse loading was observed for the 
structure subjected to a triangular pulse load. 
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Table 5 Critical Dynamic Load Factor for analyzed pulse shapes. 

Dynamic buckling criterion 
DLFcr[-] 

Triangular Sinusoidal Rectangular 

Volmir 1.37 1.18 0.94 

Budiansky - Hutchinson 1.2 – 1.4 1.2 – 1.4 1.0 – 1.2 

Petry - Fahlbusch 1.2 – 1.4 1.2 – 1.4 1.0 – 1.2 

LaRC04 n/a n/a 1.4-1.6 

 
In the second step, the effect of the laminate stacking sequence was investigated. The results are 
presented in Fig. 4 for the column subjected to rectangular-shaped pulse load. Comparison of the 
column responses shows the highest agreement for low pulse amplitudes. However, with the increase of 
pulse loading magnitude, starting with DLF = 1.2, some differences appear. The dimensionless deflection 
obtained for the sample C5 column is slightly lower than the other ones. This effect - higher resistance 
of sample C5 to pulse loading increases with load amplitude.  
 

 
Figure 4: The influence of laminate stacking sequence on the dimensionless column deflection [14]. 

 
To investigate how the fibre orientation in FRP sheets affected the FML structure failure, the failure map 
was compared for the loading DLF=1.6. Under this value of pulse amplitude, the damage in the 
composite layers was also observed. Results are presented in Table 6 (failure in metal sheets) and Table 
7 (failure in FRP layers). High agreement between analysed samples in the localization of the yielding 
area in aluminium layers is observed. In contrast, the differences are visible in the FRP sheets map of 
failure. For the failure in composite layers, the matrix failure map and fibre failure map are presented 
separately. The various fibre orientation causes it. In layers with longitudinal fibres (00), the damage 
appears near the web and flange corner (see Layer L2 and L6 for C1 and Layer L6 for C5 in Table7). The 
failure localization changes for plies with 900 fibre orientation. For those layers, the failure near the free 
edge of the flange is noticed. 
Table 8 includes the comparison of DLFcr values for samples C1, C2 and C5. A straightforward conclusion 
could be drawn based on these results: the fibre orientation in FML structure has a negligible effect on 
the dynamic stability. Slightly higher resistance to pulse loading was obtained for the C5 stacking 
sequence. High agreement between applied criteria was obtained.  
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Table 6 The map of failure in metal sheets for considered samples. 
 Layer L1 Layer L4 Layer L7 

C
1

 


max

=381MPa 
max

=370MPa 
max

=383MPa 

C
2

 


max

=386MPa 
max

=371MPa 
max

=384MPa 

C
5

 


max

=385MPa 
max

=364MPa 
max

=383MPa 

 
Table 7 The map of failure in FRP sheets for considered samples. 

 Layer L2 Layer L3 Layer L6 

C
1 

  

 

 
 

C
2

 

   

C
5

 

 no failure 
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Table 8 Critical Dynamic Load Factor for analyzed samples. 

Dynamic buckling criterion 
DLFcr[-] 

Sample C1 Sample C2 Sample C5 

Volmir 0.93 0.92 0.94 

Budiansky - Hutchinson 1.00 – 1.20 1.0 – 1.2 1.0 – 1.2 

Petry - Fahlbusch 1.40 – 1.45 1.2 – 1.4 1.4 – 1.6 

LaRC04 0.80 – 1.00 0.8 – 1.0 1.0 – 1.2 

 
5. Conclusions 
Numerical investigation of dynamic buckling phenomenon was performed on short channel section 
Fiber Metal Laminate column. The FE analyses were carried out on an experimentally validated model. 
The effect of the laminate stacking sequence and shape of pulse load on the dynamic stability was 
studied. The critical Dynamic Load Factor was estimated based on the deflection dynamic stability 
criteria and failure criteria. Results present high agreement between applied criteria. Analysis of the 
failure mechanisms reveals aluminium yielding as a primary failure mechanism developed under pulse 
loading. Results also depicted a significantly high effect of the pulse shape on dynamic stability. FML 
structure is the most resistant to triangular-shaped pulse loading and the less resistant to the 
rectangular pulse shape. Three considered samples of different laminate stacking sequence present 
similar resistance to pulse loading. Only for sample C5 the critical Dynamic Load Factor is slightly higher. 
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Influence of manufacturing process technology on buckling behaviour of thin-
walled, GFRP columns with a square cross-section 
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Abstract 
In this study, static compression of thin-walled, composite columns with square cross-section is 
presented. The influence of heat transfer during the manufacturing process of thin-walled column on the 
behaviour during compressive load has been investigated. Two series of the columns made of GFRP 
laminate with symmetric layup [45/-45/45/-45]s were manufactured using the autoclaving technique. To 
check the way of heat transfer during the curing process the two different methods of retaining and giving 
off heat from the produced element during its cooling in the autoclave process by using other process 
durations and mandrels were used. It is a well-known fact that different curing speeds and cooling rates 
affect the distribution of residual stresses inside the structure that could have a significant impact on its 
future structural performance. In case of this study, the target of these operations was to verify how the 
manufacturing process and generated in this process residual stresses are affecting buckling and post-
buckling behaviour of the structures. Therefore, manufactured in this manner two series of four 
specimens were experimentally tested. The static compression tests were performed on Instron universal 
testing machine employing additionally a contactless digital image correlation system GOM ARAMIS ®. 
Additionally, the numerical model has been developed and used to perform FEM analysis including cooling 
process (manufacturing procedure simulation) and compression test (operating load simulation). TheThe 
obtained load-deflection and load-shortening function enabled to determine critical loads and post-
critical stiffness and verify how different distribution of residual stresses is affecting the stability of such 
columns. 
 
1. Introduction 
Material engineering is a field of science undergoing rapid development. Different applications of the 
materials dictate new requirements and create new possibilities. In the places where weight optimisation 
is necessary, it is most suitable to use composite materials. Composites are currently present in multiple 
hi-tech industries: aircraft (Degenhardt et al. 2014), renewable energy (Zangenberg et al. 2014), 
automotive (Bisagni et al. 2005), medicine (Fujihara et al. 2004), sport and many others. Although this 
type of materials is continuously being developed, certain phenomena are inherent and not yet fully 
resolved. Residual stresses are an example. They appear both in metallic and composite structures and 
might have a significant influence on the structural integrity of the systems. In metallic structures, residual 
stresses are most frequently an effect of processing, such as cold-form shaping or welding (heat-affected 
zones). Solutions to the problem include annealing or tempering, which are well-known methods of 
releasing residual stresses. In the case of composite materials, especially laminates, the problem and 
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solutions are not well investigated, and there are no standard methods of releasing the residual stresses 
trapped in the material.  
The origins of residual stresses in laminates might be various – the most popular reason of their 
occurrence is chemical shrinkage. During curing of the laminate, the matrix changes its properties. After 
taking out the element from the form, it slightly changes its shape which is evidence of internal stresses 
in the material. In more complex elements, the shape imposes extra constraints, preventing post-curing 
deformations. In such a case, stresses are trapped inside the structure. Another origin of residual stresses 
in laminates is thermal expansion. This refers to composites cured in high temperatures – e.g. the 
autoclaving process. Due to thermal expansion, thermal stresses are formed in individual plies even in 
unconstrained laminate. Since the autoclave is a place where manufactured elements are constrained (by 
a tool providing the proper shape and pressure in order to avoid deformations during the process), applied 
DOFs are transformed into residual stresses. These stresses can be predicted by analytical approaches or 
the Finite Element Method.  
This study shows that residual stresses also influence the buckling and post-buckling behaviour of thin-
walled, GFRP structures with a square cross-section. A series of the experiments, supported by FE 
modelling, was performed to prove the hypothesis that residual stresses have a significant influence on 
the mechanical response of such structures.    
 
2. The object of the study 
The object of this study is to analyse the influence of autoclaving curing parameters on the buckling and 
post-buckling behaviour of thin-walled composite columns with a square cross-section. The main goal of 
this research is to confirm or refute the hypothesis that residual stresses affect the structural stability of 
this type of structures. The work builds on the research performed by the authors in this field. 

2.1. Static compression tests 
The study covers static compression of squared cross-section columns made of eight-layered GFRP pre-
preg tape with the following dimensions: 80 × 80 × 240 mm (width × height × length of the tube) – see Fig 
1 a).  

     
Figure 1: a) geometry of the columns b) compression test stand with the sample during the experiment 

 
The nominal thickness of one ply is equal to 0.15 mm (1.2 mm total wall thickness). For the purpose of 
this study, one symmetric to the mid-plane laminate code was investigated: [45/ 45/45/-45]s. Two series 
of columns were produced (four specimens per series):  

a) b) 
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• Columns produced in a nominal (suggested by the producer of the pre-preg tape) curing cycle on 
an empty aluminium mandrel (core), denoted as CS-EC (Fig 2) 

• Columns produced in a modified pre-preg (according to the suggestions of the producer and in 
ranges enabling the resin to cross-link but limiting the thermal dynamics of the process) curing 
cycle on a full aluminium mandrel (core), denoted as CS FC (Fig 3).  

A more detailed description of manufacturing process parameters is presented in sub-chapter 2.2. 
 

   
Figure 2: Manufacturing of EC columns: a) composite in the vacuum bag b) scheme of laminate formation on an 

empty aluminium mandrel 

 

   
Figure 3:  Manufacturing of FC columns: a) composite in the vacuum bag b) scheme of laminate formation on a full 

aluminium mandrel 

 
When manufactured, eight specimens were subjected to quasi-static compression tests (compression 
speed equal to 1 mm/min), which were performed on an Instron Universal Test Stand upgraded by the 
Zwick-Roel company. The specimens were placed between two self-aligning grips. The bottom grip was 
equipped with a spherical bearing. In order to eliminate the effect of imperfect contact between the edges 
of the columns and compression plates, wood fibre pads were applied. The picture of the experimental 
test stand is presented in Fig 1 b). 
 
2.2. Manufacturing of the columns 
The columns were manufactured using the autoclave curing process (Scholz Maschinenbau, Germany), 
based on vacuum bag assistance. The pressure in the autoclave was equal to 0.5 MPa. Vacuum bags were 

a) b) 

a) b) 
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subjected to underpressure equal to 0.08 MPa. The material from which columns were laminated was 
pre-preg tape: E-glass 1200tex fibres immersed in NTPT THINPREG™ 402 epoxy resin.  
Moreover, two curing cycles were applied – see both processes time-temperature relationship presented 
in Fig 4. The first method was to laminate the columns on a hollowed aluminium mandrel (standard 
aluminium square profiles with dimensions: 80 × 80 mm, a thickness equal to 6 mm and corner radius 1 
mm) and apply a nominal curing cycle (suggested by the producer of the pre-preg tape). The vacuum bag 
was formed in such a manner that there was no obstacle for the heat flow inside the tube – see Figure 2. 
The specimens formed in this process are denoted as EC. In the second case, a composite tube was 
wrapped on a full aluminium profile (denoted as FC, see Figure 3) and a modified curing cycle (with respect 
to the nominal one, but still allowed by the producer) was applied. The modification of the curing process 
for the potential reduction of internal stress, was carried out by significantly limiting the heating and 
cooling rates while maintaining the required temperature values for the proper course of the 
polymerisation process. The designed modification of the curing process is justified by the fact that the 
achieved level of minimal viscosity is usually higher in processes with a higher temperature gradient. The 
length of the minimal viscosity platform increases, positively contributing to the reduction of the risk of 
thermally induced stresses, ensuring proper conditions for favourable resin flow (Bieniaś et al. 2014 and 
Liu et al. 2006).  
 

 
Figure 4:  Time-temperature dependence in the autoclaving process for a) EC – empty core specimens b) FC – full 

core specimens 

 
2.3. Material properties of the laminate 
The material under inspection, cured in the autoclave E-glass 1200tex fibres immersed in NTPT 
THINPREG™ 402 epoxy resin laminate, was subjected to five fundamental strength tests performed 
according to ASTM D3039, ASTM D6641 and ASTM D3039 allowing to determine the properties of the 
laminate under consideration (see Table 1). The properties are E – Young’s modulus, G – Kirchoff modulus, 
T – tensile strength, S – shear strength, C – compressive strength and α – coefficient of thermal expansion 
(CTE). The indices 1 and 2 stand for fibres and matrix directions, respectively.   

Table 1 Material properties of the laminate 

E1 

[GPa] 

E2 

[GPa] 

G12 

[GPa] 

v12       

[–] 

T1  

[MPa] 

T2 

[MPa] 

S12 

[MPa] 

C1 

[MPa] 

C2 

[MPa] 

α1  

[10-6/ºC] 

α2  

[10-6/ºC] 

30.1 9.4 9.2 0.26 1265.6 32.9 135.0 565.5 109.5 18.8 6.24 

 
 

b) a) 
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3. FEM computations 
The numerical simulations to analyse the buckling and post-buckling behaviour the commercial software 
ANSYS was employed. A four-node shell element with six degrees of freedom at each node (Shell 181) 
was used to discretise the tubes. The model was discretised by 7200 elements (each wall was divided into 
60 elements along the longitudinal direction and 30 elements along the width direction). Along the width 
direction, bias was applied for future thermal analysis. This means that near the corners, where two walls 
are connected, the mesh was densified. The experience of the authors shows (Czapski & Kubiak 2015 and 
Kubiak 2017) that this amount of elements prevents the model from being too rigid, especially when large 
deflections are expected (i.e. deflections larger than double wall thickness).  
The linear buckling analysis (LBA) was performed to determine buckling mode, which are used as a shape 
of initial geometrical imperfection with amplitude equal to 10% of the wall thickness in further step of 
numerical calculations. In order to find the equilibrium paths of the columns the nonlinear analysis were 
performed. As during the experiment two buckling modes corresponding to three and four halfwaves 
occurred, these buckling modes were the only analyzed ones. The maximal compressive load applied in 
the non-linear analysis was equal to a force approximately four times larger than that achieved from LBA. 
The geometrical and FE models with boundary conditions of column compression tests are presented in 
Figs 5 a) and b), respectively. 
To include the thermal residual stresses the nonlinear calculations was preceded by the simulation of the 
cooling down of the laminate in the autoclave. The FE model is built in such a manner that the column is 
wrapped on an undeformable, aluminium mandrel (twice longer than the tubes) and cooled down from a 
temperature of 135ºC to room temperature 23ºC (a difference equal to 112ºC). The limitation of this 
approach is that from the point of view of numerical modelling, there is no distinction between curing on 
an empty (EC) and full (FC) core. The material properties of the laminate were taken from Table 1 and are 
temperature-independent. Frictional contact between the composite and aluminium is assumed (friction 
coefficient equal to 0.2). Moreover, pressure p is applied to the laminate, which is equal to the sum of 
pressure in the autoclave (0.5 MPa) and pressure in the vacuum bag (0.08 MPa); therefore, the total 
applied pressure p is equal to p = 0.58 MPa. In order to fix the model in the computational space, the 
mandrel is constrained at its ends (see Fig 5 c)). The values of the thermal expansion coefficients were 
taken from the performed experiment (see Table 1).  
In both schemes of simulations with and without residual stresses, i.e. including (further denoted as 
residual) or not including (further denoted as no residual) cooling down numerical simulations, the 
settings are the same. The failure was not followed. Buckling loads, presented in Table 2, were determined 
using two different methods basing on the results of the simulation. In particular the wall deflection and 
shortening of the columns have been extracted from this data. One of the most popular methods of 
quantifying buckling from experimentally obtained or in nonlinear analysis the load-deflection curves is 
known as the P-w2 method. This approach is based on transforming the force-wall deflection diagram into 
force-squared wall deflection plot so that that the post-buckling state can be approximated by straight 
line. The intersection of this line with the underlying data can then be used to provide an estimate for the 
buckling load. The second method is based on force-shortening of the column curve which is based on the 
fact that at buckling, the curve changes its slope (results obtained using this method are abbreviated by 
LSC – Load Shortening Curve). Both methods are precisely described in (Paszkiewicz & Kubiak 2015 and 
Czapski & Kubiak 2016). Buckling loads obtained from FEM studies are given in Table 2. Load-shortening 
curves obtained from FEM are presented in Fig 7, together with experimental results. 
 



6 

 

 

Figure 5:  a) Geometrical and b) finite element models of column compression with applied boundary conditions 
and c) FE model of the curing (cooling) of the laminate process – column wrapped in aluminium profile 

 
Table 2 Critical loads achieved from non-linear FEM studies 

# halfwaves Model Critical load [kN] 

P-w2 Load-shortening curve Average 

3 no residual 5.28 5.28 5.28 

residual 10.64 10.72 10.68 

4 no residual 5.31 5.76 5.54 

residual 10.43 10.37 10.40 

4. Experiment vs FEM  
The buckling loads obtained from the experiment were determined thanks to the maps of the 
deformations obtained from contactless digital image correlation system Aramis and they are presented 
in Table 3. Moreover, the comparison of the experimental loads with the results of FE modelling is given 
in Fig 6. Green bars correspond to the buckling loads of the columns produced in FC curing process while 
black – EC curing process. Blue and red lines correspond to the results of FE modelling – the model which 
does not include residual stresses and which does include residual stresses, respectively. It is important 
to mention that from the point of numerical modelling, there is no difference between EC and FC curing 
process, as the model does not include rheology of the polymer matrix.   
 

 

Figure 6:  Comparison of buckling loads obtained from FEM and the experiment presented in the form of a bar 
chart in a) three halfwaves and b) four halfwaves, and errors between FE and experimental results.  

The positive error indicates that the FE model underestimates the experiment 

a) b) c) 

ΔT = - 112°C 
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Figure 7:  Comparison of FEM and experimental load-shortening cruves for buckling modes a) three halfwaves and 
b) four halfwaves 

 
Table 3 Experimentally obtained buckling loads 

 EC1 EC2 EC3 EC4 FC1 FC2 FC3 FC4 

# halfwaves m 4 3 4 3 4 

B
u

ck
lin

g 

lo
ad

s 
[k

N
] P-w2 method 6.37 10.03 8.79 8.65 7.29 5.14 8.01 5.09 

LSC 7.29 8.98 7.10 9.01 8.61 4.62 7.08 6.12 

Average 6.83 9.50 7.95 8.83 7.95 4.88 7.54 5.61 

One can draw several conclusions from the buckling loads presented in Table 3 and the comparison of the 
experimental results presented in Fig 6. The first conclusion is that for all specimens, except FC2, 
experimentally determined critical forces are higher than the estimation given by the FE model, which 
does not consider residual stresses. In similar studies, related to the buckling behaviour of thin-walled 
structures but with an open cross-section, the FE model without residual stresses taken into account 
provided results which were higher in terms of the critical loads and post-buckling stiffness compared to 
the experiment. This regularity can be simply explained by multiple imperfections of the structure (e.g. 
shape or quality of manufacturing etc.) In the analysed case, the FE model without residual stresses 
underestimates the experimental buckling loads. A similar conclusion can be drawn for post-buckling 
stiffness by looking at the load shortening curves presented in Figs 7 a) and b). Only two specimens, FC2 
and FC4 (FC samples with buckling mode equal to 4), had lower stiffness than the model without residual 
stresses. This means that residual stresses play an essential role in this problem, and a model including 
them should be taken as a reference. With respect to this model, all safety factors should be assumed 
during the design of this type of structures.  

The second issue is related to the differences between the buckling behaviour of samples EC and FC. 
Although the FE model is not able to distinguish between them (the model does not include the rheology 
and cure dynamics of the resin, where all differences may find their origins), the differences are visible. 
The EC specimens produced on an empty aluminium mandrel had buckling load and post-buckling stiffness 
always higher than FE model without the residual stresses. Also, the buckling mode was the same across 
all samples (four halfwaves). Compared to the FC, two buckling modes were observed: three and four 
halfwaves indicating lower repeatability than the EC series. Samples FC2 and FC4, where four halfwaves 
occurred, had significantly lower buckling loads and post-buckling stiffness. In the cases of FC1 and FC3, 
where three halfwaves were observed, buckling loads and post-buckling stiffness were higher than the FE 
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model without residual stresses. Equilibrium paths and load-shortening curves fit between two FE models 
curves. 

5. Conclusions 
The research, taking into account the results of similar studies available in the literature (Banat et al. 2016, 
Dębski et al. 2014 and Debski et al. 2013), showed that thermally induced stresses in thin-walled 
composite columns with a square cross-section play a significant role in the buckling and post-buckling 
behaviour of this type of structures. What is more important is that they improve the structural stability 
of the columns. According to the conducted experiment, it was proven that the presence of residual 
stresses inside the structure can increase buckling loads up to 42% compared with the results of FE 
modelling, assuming no pre-stress. In order to prepare the numerical model, which is capable of including 
thermal residual stresses, it is necessary to determine one extra material property of the laminate: the 
coefficient of thermal expansion, as it was presented here. Apart from FE modelling, the experiment 
delivered another piece of information, which is the influence of the manufacturing method on the 
buckling behaviour of this kind of structures. Cure dynamics was an important issue inspected 
experimentally. It turned out that the process with the smaller temperature gradient (FC) might have a 
potential influence on lowering residual stresses inside the material and, consequently, exerting smaller 
critical forces. To the contrary, the speed of the process does not affect the quality of the microstructure.  
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Numerical and experimental post-buckling analysis of slender thin-walled 
GLARE members subjected to compressive loading 

Dominik Banat1, Radosław J. Mania2 
 
 
Abstract 
This study deals with a post-buckling analysis of thin-walled GLARE members subjected to axial 
compressive loading. Considered slender and top-hat-shaped GLARE samples are made of hybrid 
composite that consists of alternating thin layers of aluminum alloy sheets and unidirectional glass fiber-
reinforced prepregs. Composite specimens were axially compressed in laboratory tests by the 
electromechanical static testing unit of Instron that provided a displacement control loading. 
Deformations were measured in full load range until specimen fracture by means of Aramis 3D non-
contact optical equipment that uses the digital image correlation (DIC) method. The behavior of thin-
walled GLARE members was analyzed with the primary attention to post-buckling response. 
Simultaneously, numerical simulations by FEM were performed to predict the load-carrying capacity of 
thin-walled sections. Comparative post-buckling analysis was performed based on nominal stress state 
in both non-degraded and degraded structure. For the latter, the damage evolution law was introduced 
by the material property degradation method (MPDG), which allowed a gradual reduction of material 
stiffness based on assumed damage variables. The impact of damage variables on the laminate load-
carrying capacity and predicted damage mode was investigated. Presented numerical results were 
found to be in a high agreement with experimental damage tests. 
  
 
1. Introduction 
Fiber-reinforced composite materials have seen significant advancements in a variety of industries in 
recent years. Significant developments can be recognized in the fields of aerospace engineering, 
transportation, automobile, nuclear, wind power, and civil engineering [1,2]. Composite materials 
gained the greatest attention after the development of synthetic binding resins that allowed for the 
manufacturing of multi-layered laminates [3]. Herein, some of the multi-layered composite applications 
are based on unidirectional glass fiber-reinforced prepregs and sheets of aluminum alloy  
– GLARE type of Fiber Metal Laminates (FML). Such plies combination ensures high material strength as 
well as improved damage and fatigue tolerances [4]. GLARE laminates have better strength and stiffness 
than other standard materials when compared on a unit weight basis. Furthermore, the combination of 
different laminates, as well as varying fiber alignment and fiber volume ratios, can have a considerable 
impact on composite performance. This brings up a lot of opportunities for composite manufacturers to 
create composite-based components that are tailored to a specific industrial application [5,6]. It has 
attracted a lot of interest among researchers over the last several years to study the behavior of 
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composites under various loading conditions, aiming to make recommendations for their potential 
benefits in industrial applications [7–9].  
 
Innovative multi-layered composite structures can be used in challenging designs solely due to 
considerable improvements in the semi-analytical methods (SAM) [10] and computational tools in the 
Finite Element Method (FEM). Nevertheless, one of the most challenging aspects of simulating 
composite materials' post-buckling responses is predicting the ultimate load-carrying capacity [11]. This 
comprises a comprehensive analysis in order to provide the material with the greatest strength and 
damage tolerance while maintaining a low weight of the structure. Numerical simulations and advanced 
techniques are shown to be especially significant in the analysis of post-buckling behaviors of slender 
thin-walled members [12]. Thin-walled composite sections may gradually lose their load-carrying 
capacity in the post-buckling condition, resulting in various types of permanent structural damage such 
as delamination, fiber rupture, matrix cracking, or a combination of these failure modes [13,14]. Herein, 
the fiber damage initiation and propagation were recognized as the primary factor that leads to the loss 
of load-carrying capacity in the multi-layered GFRP laminates subjected to uniaxial compressive loading 
[11].  
 
According to a literature survey, predicting the post-buckling response of thin-walled composite 
members requires modelling material stiffness degradation based on selected criteria [15,16]. Thus, 
failure initiation and propagation can be analyzed by means of progressive failure analysis (PFA). The 
degradation model and methodologies for selecting damage variables for PFA applied to laminated 
composites have been discussed in several studies [17–19]. The initial results that included PFA applied 
to FML stability analysis has been already discussed in Refs. [20]. The main aim of this research is to 
compare numerical analysis performed based on nominal stress state in both non-degraded and 
degraded structure with the main focus on the post-buckling response. Hence, numerical analysis and 
experimental tests were carried out in order to forecast the loading conditions that lead to loss of load-
carrying capacity.  
 
2. Subject of the study and methodology 
The subject of this study is the 7-layered hybrid laminate made of alternating plies of aluminum alloy 
2024 T3 with single-ply thickness equal to 0.3 mm and glass-epoxy unidirectional fiber-reinforced 
prepreg TVR 380 M12 26% R-glass (Hexcel™) with a single-ply thickness equal to 0.25 mm. Mechanical 
properties of GLARE constituents has been presented in Table 1. Additionally, Poisson’s ratios were 
equal to ν = 0.33 for aluminum as well as ν12/13 = 0.269 and ν23 = 0.400 for the composite plies, 
respectively. The multi-method approach for determining FML mechanical properties has been 
discussed in the comparative study by Kamocka et al. [21]. 
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Table 1: Mechanical properties of GLARE constituents 

Aluminium  [GPa] GFRP prepreg [GPa] 

E 72 E1 53.90 

G 27.07 E2 14.92 

R0.2 359 * 10
-3 

E3 14.92 

Etang 720 * 10
-3

 G12 5.49 

  G23 5.33 

  G13 5.49 

 
Various layer arrangements of GLARE samples were based on the fiber's alignment in the composite 
layer. GLARE laminates were manufactured by autoclaving technique, which provided the high-quality 
multi-layered composite. Laboratory procedures of ultrasonic non-destructive testing to assess the 
quality of GLARE specimens produced by the autoclave technique has been discussed in Refs. [22].  
 
In this study, analysis was performed for slender and thin-walled top-hat-shaped sections. Dimensions 
of the geometry and one of the selected GLARE lay-up configuration are presented in Fig. 1. 
 

a) b)  

Figure 1: Dimension of top-hat shaped sections (a) and laminate configuration (b)  
 

3. Methodology 
Composite specimens were axially compressed in laboratory tests by means of a static testing unit of 
Instron upgraded with Zwick/Roel control software. Electromechanical strength testing machine had  
a maximum capacity of 200kN, for which applied screw-type testing machine provided a displacement 
control loading. During experimental tests, deformations were measured by Aramis 3D non-contact 
optical equipment based on digital image correlation (DIC), which allowed investigating columns 
behavior in full load range until fracture. Furthermore, customized plate rigs were installed on the test 
stand's upper and lower crossheads to ensure uniform axial compression. Thus, samples were placed in 
the chamfered groove to avoid lateral displacement of the loaded edges, as shown in Fig. 2. For 
considered slender and thin-walled members, such a solution ensured satisfactory agreement with the 
simply supported boundary conditions [8]. 
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a) b)  
Figure 2: Experimental test stand (a) and diagram of column load (b) for top-hat shaped member subjected to 

uniform compressive loading [20] 
 

Simultaneously, numerical simulations by FEM were performed to predict the post-buckling equilibrium 
paths and load-carrying capacity. The multi-layered GLARE structure was modelled in FEM commercial 
software package ANSYS by means of implemented structural element SHELL181. This a four-node 
element with six degrees of freedom at each node is generally dedicated to modelling plate 
structures. The shell element and available section options in the FE application allowed to define 
individual plies of the laminate separately i.e., thickness, material properties and main axes of the 
orthotropic material. The connections between layers were not modelled. Mesh convergence analysis 
was not performed for top-hat section study, but mesh size (2mm) was adopted based on author’s 
previous experience with FML of different open cross-section shapes (including Z-shape and channel 
sections) [15]. In current model of top-hat shaped member, mesh refinement was applied to design the 
effects of milled grooves, which were modelled by constrains in the direction perpendicular to the 
profile walls at the distance of 2 mm from profiles’ edges (as shown in Fig. 2). For circular corners 
between web-flange and flange-rib junctions of the section, the mesh refinement was also achieved 
with a local cylindrical coordinate system application. As a result, nodes near rounded edges were 
constrained in the direction perpendicular to the profile walls, which was in agreement with assumed 
simply supported boundary conditions. Mesh convergence analysis could be performed in further 
studies that include investigation of the continuum damage model, wherein energy dissipated is a 
function of the element size causing mesh-dependent results.  
 
The non-linear problem was solved initially by the incremental Newton– Raphson procedure whereby 
the stiffness matrix was updated with each iteration and equilibrium paths were calculated based on 
nominal stress state in a non-degraded structure. Secondly, the damage evolution law was introduced 
by the material property degradation method (MPDG), wherein the Hashin criterion was used to 
monitor the failure initiation. Hence, based on the damage variables, the stiffness was gradually reduced 
in the area where failure was initiated. Material property degradation could be solely applied to 
composite plies, i.e. outer layers (L1 and L7) and the inner layer (L4). In this respect, the post-buckling 
response of aluminum plies was analyzed separately in a non-degraded structure by means of the 
Huber-Mises-Hencky criterion. Thus, numerical simulations of load carrying capacity (LCC) were carried 
out simultaneously for two different numerical models: 
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1. Progressive failure models with the application of material properties degradation method 
(FEM_degraded). The load-carrying capacity was determined based on the maximum load 
obtained from the post-critical equilibrium path. 

2. Geometrically non-linear analysis without degradation of material properties 
(FEM_non_degraded). This analysis was carried out for the selected aluminum layer using the 
Huber-Mises-Hencky criterion. The load-carrying capacity was determined based on the 
equivalent stresses that were compared to the yield point defined in aluminum material 
properties.  

 
For the purpose of this manuscript paper, results of numerical and experimental analysis have been 
presented for selected laminate configuration Al/0/25/Al/25/0/Al. 
 
4. Results and discussion 
Numerical geometrically non-linear analysis was carried out to forecast the load-carrying capacity based 
on post-buckling equilibrium paths for models with non-degraded material properties 
(FEM_non_degraded) and with degraded material properties (FEM_degraded) calculated based on the 
abovementioned MPDG procedure. In the latter, various values of damage variables for fiber (df) and 
matrix (dm) were used to control material stiffness reduction. Therefore, numerical simulations were 
performed for the following models: 

- FEM_non_degraded: df =0 and dm =0 
- FEM_degraded_1: df =0.5 and dm =0.5 
- FEM_degraded_2: df =0.5 and dm =0.75 
- FEM_degraded_3: df =0.75 and dm =0.75 
- FEM_degraded_4: df =1 and dm =1 

 
Note that df/m=1 indicates complete stiffness reduction after failure initiation. Results of load carrying 
capacity – LCC, determined for various numerical models and experiment, are given in Table 2. In order 
to analyze the consistency between FEM and experimental tests, the relative differences of obtained 
results were also calculated. Detailed analysis of load-shortening curves obtained from the geometrically 
non-linear analysis is presented in Refs. [22]. 
 

Table 2: Load-carrying capacity determined by experiment and FEM  

Sample 
Method 

 

Load Carrying 

Capacity - LCC [kN] 

 

EXP vs FEM [%] 

(Relative difference) 

Al/0/25/Al/25/0/Al 

Experimental test (ARAMIS) 79.59 

 

 

Numerical FEM_degraded_1 82.62 3.67 

Numerical FEM_degraded_2 82.11 3.07 

Numerical FEM_degraded_3 81.98 2.91 

Numerical FEM_degraded_4 81.18 1.96 

Numerical FEM_non_degraded 80.67 1.34 

 
Based on the above, the relative difference between experimental and numerical results of LCC 
prediction varies between 1.96% - 3.67% for models with material stiffness reduction (FEM_degraded_1 
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– FEM_degraded_4). The highest agreement was achieved for model FEM_degraded_4 that assumed 
df/m=1, leading to complete material stiffness reduction after failure initiation in specific finite elements. 
This confirms that high values of material stiffness degradation parameters used in FEM analysis allow 
achieving the highest level of correlation between experiment and FEM results. Similar findings were 
obtained in a study of 8-layered GFRP structural members exposed to compression [11], in which 
damage variables equal to or greater than 0.9 provided acceptable relative deviations between 
experiment and numerical results (below 10%). Nevertheless, in this study, the highest agreement 
between experiment vs FEM was achieved for FEM_non_degraded model (df =0 and dm =0). It assumed 
load-carrying capacity prediction based on Huber-Mises-Hencky criterion at the point when equivalent 
stresses exceed the aluminum yield limit. In such a model, the relative difference of obtained results was 
equal to 1.34%. This indicates that the entire laminate response is governed by aluminum layers, and 
the Huber-Mises-Hencky criterion can be applied to determine the loss of load-carrying capacity of 
considered 7-layered GLARE members.  
 
Subsequently, analysis of the damage status (0 - undamaged, 1 - damaged, 2 - entirely damaged) was 
performed for top-hat-shaped members subjected to compressive loading. Damage maps were 
calculated for loads corresponding to LCC based on geometrically non-linear solutions in several models 
with progressive failure method (FEM_degraded_1 – FEM_degraded_4). FEM simulations were 
performed for all composite plies in the various configuration of GLARE laminates. The post-buckling 
response of each composite ply is similar with regards to the member mid-plane due to the symmetry of 
laminate lay-ups. Thus, the example of progressive damage mode for FEM_degraded_3 type in the 

selected composite layer is shown in Fig. 3. 
 

 
 
Figure 3: Numerical progressive damage modes of top-hat shaped member (FEM_degraded_3) and experimentally 

damaged sample  

 
The damage modes revealed by progressive failure analysis allowed for the prediction of laminate 
failure at the web-flange intersection and ribs along the member's mid-length. Herein, the mid-length of 
the members' free edges are extensively subjected to the bending effect in the post-buckling state. Due 
to the symmetry of the top-hat section geometry, a similar damage state was detected on both sides of 
the specimen. Numerical results were found to be in good agreement with the experimentally damaged 
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GLARE sample. This confirms that boundary conditions defined in the numerical model corresponded to 
uniform axial compression of thin-walled members subjected to laboratory tests.  
 
5. Conclusions 
This study investigated post-buckling response and the load-carrying capacity of GLARE members 
subjected to axial compressive loading. Various numerical models were taken into account to determine 
loading conditions that lead to loss of load-carrying capacity. Relative differences between numerical 
and experimental results were within the range of 1.34% - 3.67% for selected in this study laminate 
configuration (Al/0/25/Al/25/0/Al). The numerical and experimental results show high agreement, 
which confirms that the prepared numerical model can be used as an effective tool to forecast the load-
carrying capacity of slender GLARE members. Herein, the highest consistency of 1.35% (relative 
difference between experiment vs FEM) was achieved for the model without degradation of material 
properties (FEM_non_degraded). The load-carrying capacity was determined based on the equivalent 
stresses calculated by the Huber-Mises-Hencky criterion, which were compared to the yield limit defined 
in aluminum material properties. This indicates that the entire laminate response is governed by 
aluminum layers, and the failure criterion applied in aluminum plies could be used to determine the 
load-carrying capacity of 7-layered GLARE members. 
 
The damage status of top-hat-shaped members was also assessed using progressive failure analysis. This 
allowed forecasting laminate failure at the mid-length of member free edges and at the web-flange 
intersection. In comparison to FEA, the experimentally damaged specimens had similar fracture modes 
and regions of failure initiation. As a result, progressive failure analysis using MPDG could be applied for 
detecting laminate damage areas in thin-walled sections subjected to compression. The identification of 
several numerical models allowed determining that high values of material stiffness degradation 
parameters used in FEM analysis provide the highest level of agreement between experiment and 
numerical results. This can also provide a recommendation for a similar study of slender and thin-walled 
members subjected to compressive loading. Other loading scenarios, however, should be subjected to a 
similar comparative analysis of FEA models and experimental validation. 
 
Furthermore, based on the progressive failure analysis carried out for similar Z-shaped FML members 
[15], it has been observed that damage variables should take into consideration different values for fiber 
and matrix failure in order to simulate various susceptibility to damage of these two constituents. 
However, based on the analysis performed in this study for model FEM_degraded_2 (df =0.5 and  
dm =0.75) with various damage variable for fiber and matrix, this has been noted that damage variables 
have solely minor impact on the sample's load-carrying capacity. This also confirms that aluminum 
layers govern the post-buckling response and the material stiffness reduction within composite plies 
does not affect significantly the GLARE performance in the post-critical state. 
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